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요약: 해양 지역 간 복잡한 “온난화 연쇄 작용”을 이해하는 것은 해양 열 상호작용이 지구 기후 안정성에 미치는 연쇄적인 영향을 
이해하고 예측하는 데 매우 중요하다. 본 연구는 네트워크 분석을 활용하여 해수면 온도(SST)의 지역 간 상호작용과 복잡한 열 전
달 동역학을 분석하였다. 열 방정식 접근법을 적용하여 해양 지역을 노드로, 방향성을 가진 열 전달 관계를 엣지(link)로 표현함으
로써, 열의 유입과 유출 분포 측면에서 중요한 해양 지역을 네트워크 과학의 중심성 측정법을 활용하여 식별하였다. 얻어진 결과는 
엘니뇨-남방진동(ENSO) 시스템과 인도양 및 대서양 간 상호작용과 같이 이미 보고된 영향력 있는 해양 커뮤니티들의 상호작용을 
강조하며, 이러한 지역들이 전 지구적 열 분포에서 가지는 기능적 역할을 이해하는데에 도움을 준다. 이 연구는 해양 온도 역학으
로 얻어진 상호작용이 기후 안정성에 미칠 잠재적 함의에 대한 통찰을 제공할 수 있다.

주요어:�네트워크�분석,�커뮤니티,�해수�표면�온도,�해수�상호작용,�기후�동역학

ABSTRACT: Understanding the complex “warming chain” in sea regions is crucial for predicting the cascading impacts of oceanic heat 
interactions on global climate stability. This study employs network analysis to explore the interactions of sea surface temperature (SST) 
across oceanic regions, focusing on complex heat transfer dynamics. By applying a heat equation approach, sea regions are represented as 
nodes and their directional heat transfer relationships as edges, allowing the identification of key oceanic regions in terms of inward and 
outward heat distributions. The analysis highlights previously reported influential oceanic communities, such as those linked to the El 
Niño-Southern Oscillation (ENSO) system and the mutual interactions between the Indian and Atlantic Oceans, and underscores the role 
of these regions in global heat distribution, offering insights into oceanic temperature dynamics and potential implications for climate stability.

Key�words: network analysis, community, sea surface temperature, ocean interactions, climate dynamics
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1. Introduction

The complex interactions between various sea regions 
play a crucial role in shaping the global climate system. 
In particular, understanding the interactions between sea 
surface temperatures (SST) of different oceanic regions is 
essential, as it regulates the Earth's climate system and 
significantly impacts weather patterns, ocean circulation, 
and marine ecosystems (Deser et al., 2010; Boers et al., 
2019; Robertson et al., 2000; Lapointe et al., 2020; Peng 
et al., 2024). 

Recent studies, for example, have emphasized the crit-
ical influence of the Indian Ocean on climate anomalies 
and sea temperature changes (Hu and Fedorov, 2020; Yang 
et al., 2022). Among them, one study has observed cli-
mate anomalies in the North Atlantic Ocean in relation to 
the Indian Ocean, specifically focusing on the phenomen-
on known as the North Atlantic Warming Hole (NAWH) 
(Hu and Fedorov, 2020). The NAWH refers to a region in 
the North Atlantic that experiences a cooling trend in 
contrast to the overall warming observed elsewhere, which 
has significant implications for both regional and global 
climate patterns. The cause of the NAWH is still debated 
and has been linked to several factors, including changes 
in ocean currents (Clement et al., 2018), and atmospheric 
circulation patterns (Josey et al., 2019; Lozier et al., 2019; 
Hu and Fedorov, 2020). In particular, it is known that 
warming in the Indian Ocean, driven by increased green-
house gas emissions, affects the North Atlantic through 
complex atmospheric and oceanic teleconnections. This 
warming connection is an example of a “warming chain” 
between distant oceanic regions and provides an important 
context for understanding changes in the global climate 
system.

Another study also identified an interactive warming 
chain between the Indian Ocean and the Atlantic Ocean 
(Yang et al., 2022). The authors found that the interaction 
between the Indian Ocean and the North Atlantic Ocean 
amplifies the warming trend in both regions through at-
mospheric teleconnections. Additionally, the researchers 
observed that the Pacific Ocean plays a modulatory role 
in this warming chain. This is another example of how in-
terconnected warming across different oceanic regions 
contributes to regional temperature increases. 

El Niño-Southern Oscillation (ENSO) also plays a cru-

cial role in modulating SST across the tropical Pacific 
and has far-reaching effects on global climate systems. As 
discussed by McPhaden et al. (McPhaden et al., 2006), 
ENSO acts as an integrating concept in Earth science by 
linking atmospheric and oceanic processes, which together 
drive significant variations in SST. During El Niño events, 
warmer-than-average SSTs spread across the central and 
eastern tropical Pacific, altering atmospheric circulation 
patterns and affecting global climate phenomena such as 
rainfall distribution, storm formation, and even temper-
ature anomalies in remote regions. This may be another 
element in the warming chain of SST. However, the com-
prehensive interactions among these various sea regions 
remain poorly understood, as conventional methods often 
analyze SST by focusing on specific regions.

In this study, we employ network analysis to investigate 
the regional interactions involving SST across various oce-
anic regions, addressing the gap in research on the com-
prehensive “warming chain” between different sea regions. 
By applying a heat equation approach, we represent sea 
regions as nodes and the heat transfer relationships be-
tween them as edges, allowing us to examine the overall 
network of heat interactions. This approach enables us to 
identify possible key regions that can drive SST variability 
and uncover the underlying structures that govern these 
complex interactions. By visualizing and quantifying the 
structural characteristics of the interactions, we gain a 
comprehensive understanding of the heat distributions 
across the entire oceanic system, emphasizing the broader 
context of heat transfer and inter-regional influences that 
are often overlooked in conventional analyses.

2. Data and Methods 

In this study, we apply the heat equation from statistical 
physics to explore directional interactions in the SST dataset.

2.1. Sea Surface Temperature Dataset and 
Preprocessing 

We utilize the optimum interpolation Sea Surface Temper- 
ature (SST) dataset version 5 from National Oceanic and 
Atmospheric Administration (NOAA, USA) (NOAA). This 
dataset is a high-resolution (2° × 2°) global analysis of 
SST, produced by blending satellite observations, ship, and 
buoy data. The SST dataset provides daily SST values, 
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which are optimally interpolated to fill data gaps, and this 
preprocess makes the dataset suitable for climate mon-
itoring and long-term trend analysis. Version 5 of the da-
taset includes updated algorithms for better bias correc-
tion and improved accuracy in regions with sparse in-situ 
observations. This dataset is widely used in oceanographic 
and climate studies due to its consistency and high tem-
poral resolution, making it an ideal choice for analyzing 
regional SST interactions. In this study, data from 1979 to 
2019 were utilized for the analysis, and to analyze the 
temperature dataset, we calculated the average temper-
ature for each cell over the target period, then subtracted 
this average from all temperature data points within that 
cell.

2.2. Heat Equation Approach
In statistical physics, the temporal evolution of a spa-

tially distributed temperature field   is often de-
scribed by the heat equation, where   denotes the posi-
tion vector, and  represents time. The mathematical form 
of the heat equation is as follows:

 

 ∇ (1)

 

Here, ∇  is the Laplacian, the second-order spatial de-
rivatives of temperature, and   represents thermal dif-
fusivity, indicating the sensitivity of a point to temper-
ature differences in its vicinity. The Laplacian yields neg-
ative values when the temperature is higher than the aver-
age temperature of the surroundings and positive values 
when the temperature is lower. 

In discrete spaces, Eq (1) can be rewritten as 
 

      (2)

 

where index  denotes spatial positions, and  is time 
interval of the observed temperature. The   matrix rep-
resents the diffusivity of each cell, and the elements of 
the Laplacian matrix  , calculated as , where  is a 
diagonal matrix containing the number of neighboring lo-
cations for each cell, and  is the adjacency matrix, thus 
analogously representing the Laplacian operator in con-

tinuous space.
The heat equation is typically considered in uniform 

spaces where interactions among neighboring nodes are 
equal, similar to an unweighted network. However, in the 
real world, non-uniform interactions between regions are 
expected in phenomena such as ocean currents and at-
mospheric teleconnections. This leads us to consider a 
weighted and directed network scenario, where the off-di-
agonal elements of   can take any real value. Here, 
the real-valued elements represent the weighting of how 
much a position of a node  influences node , based on 
temperature. The previously discussed ​  is extended 
to a generalized Laplacian matrix, , which represents 
the relative influence of  on . These weights need not 
be symmetric. In this case, the diagonal elements   be-

come  . For example, in a network with uniform 

temperature   , there would be no temporal 
variation in temperature at any node, leading to    . 

To determine  which best explains the given spa-
tio-temporal SST data  under the aforementioned con-
ditions, the equation suggests that a suitable  should 
satisfy the following criteria:

 

     (3)

 
and Eq. 3 can be applied to an objective function of      . By applying 

the Adam optimization to minimize the error, one can be-
gin with the Laplacian matrix of the fully connected net-
work as the initial . Since the update rule for  must 
also account for changes in   due to constraints that 
preserve the sum of  in  , the equation can be re-
written as follows: 

 


 

 


 
   ∙ 

(4)

 

where 
 . With a learning rate  , one can up-
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date  as
 

 


(5)

 

Here,  denotes the updating step, and  represents the 
interval between the updating time steps. Please note that, 
during the simulation, any change that would result in a 
positive  will be used. It means off-diagonal compo-
nents of  were kept positive by setting any negative 
values to zero. 

2.3. Construction of Backbone Network
To extract the backbone of the SST network, we ap-

plied the method proposed by Serrano et al. (Serrano et 
al., 2009). This technique identifies the most significant 
connections in a weighted network by statistically filter-
ing out less relevant links. Specifically, for each node, the 
algorithm evaluates the weights of its edges and com-
pares them to a null model of random edge assignments. 
This method allows us to retain only those edges that ex-
hibit statistically significant interactions, effectively re-
ducing the complexity of the network while preserving its 
essential structure. In our analysis, we set the significance 
level to   , meaning that only links satisfying the 
significance level were retained.

Starting from the weighted matrix , derived from ap-
plying the heat equation approach to the SST data, we ex-
tracted the SST backbone network. This filtered network 
highlights the significant interactions between sea re-
gions, offering a clearer understanding of the underlying 
patterns in SST variations. After having the backbone 
network with   , the total number of nodes in origi-
nal backbone network is 9,958, and with 1,555,158 di-
rected edges. 

2.4. Louvain Community Detection
The Louvain community detection algorithm is a wide-

ly used method for identifying communities in large net-
works by optimizing modularity. Modularity is a measure 
that compares the density of edges within communities to 
the density of edges between communities (Blondel et al., 
2008; Dugué et al., 2015). The modularity   for a di-
rected weighted network is mathematically expressed as:

     inkjout cicj , (6)

 
where  is the adjacency matrix of the network,  in

and  out are the incoming degrees of nodes  and out-
going degrees of node ,  is the total number of edges. 
In this equation,   and  represent the communities to 
which nodes  and  belong, and   is 1 if nodes  
and  are in the same community and 0 otherwise. The 
Louvain algorithm works in two phases. In the first 
phase, each node is assigned to its own community, and 
nodes are iteratively moved to neighboring communities 
to locally maximize the modularity. In the second phase, 
nodes belonging to the same community are aggregated 
into a single super-node, and the algorithm is reapplied to 
this reduced network. The process continues until no fur-
ther improvements in modularity can be made, allowing 
the detection of hierarchical community structures at 
multiple scales. In the current study, we employed the 
Louvain algorithm from Python’s NetworkX package, us-
ing the default resolution parameter of 1, and a con-
vergence threshold of 10-7.

2.5. Building the Community Network 
Each detected community with the Louvain algorithm 

represents a group of nodes, that have stronger interactions 
with one another compared to nodes outside the community. 
In this study, a group of nodes in the backbone network 
represents the positions of sea surface areas divided into a grid.

To simplify the interaction structures between sea re-
gions, we constructed a new network from the backbone 
with community indexes, where each node in this new 
network represents an entire community identified in the 
backbone network. The connectivity between these new 
community nodes was established by aggregating the 
original links between nodes in the backbone that be-
longed to each pair of communities. In this aggregation, 
we only considered strong link weights greater than 10-3. 
This process resulted in a community-level network with 
12 nodes, where the edges represent the total weight of 
the connections between communities. This commun-
ity-level network provides insights into the interactions 
among different sea region communities, enabling us to 
observe higher-order patterns and relationships between 
key regions within the backbone structure. 
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2.6. Network Centralities
2.6.1. Betweenness Centrality 
Betweenness centrality measures the importance of a 

node based on the number of shortest paths passing through 
it. If a node lies on many shortest paths between other pairs 
of nodes, it has a high betweenness centrality, indicating 
that it acts as a bridge in the network. Mathematically, be-
tweenness centrality for a node  is defined as:

 ＝ ≠≠
  (7)

where  is the total number of shortest paths from 
node  to node , and    is the number of those paths 
that pass through node  (Freeman, 1977; Newman, 2018).

2.6.2. Eigenvector Centrality 
Eigenvector centrality assesses the importance of a 

node based on the importance of its neighbors. A node 
connected to many highly influential nodes has a high ei-
genvector centrality. It is defined as the eigenvalue equa-
tion:

    (8)

where   is the eigenvector centrality of node ,  is the adjacency matrix element between nodes  and 
, and  is the largest eigenvalue of the adjacency matrix 
(Bonacich, 1972; Newman, 2018).

In directed networks, the centrality of nodes can be 
evaluated using left and right eigenvector centrality. 
These measures are derived from the eigenvectors of the 
network's adjacency matrix  and help capture different 
aspects of influence within the network. For a given ad-
jacency matrix , right eigenvector centrality (right) is 

obtained from the eigenvalue equation rightCEright. 
Here, right represents the importance of nodes based on 

the inbound connections from other influential nodes, 
with  being the eigenvalue. Right eigenvector centrality 
measures how much a node benefits from being con-
nected to other important nodes, emphasizing the inbound 
influence of each node. This is particularly useful for as-
sessing the significance of nodes that receive links from 

many highly connected nodes.
On the other hand, left eigenvector centrality (left) is 

computed by considering the transpose of the adjacency 

matrix, satisfying the equation leftTACEleftT . In this 

context, left represents the influence that each node has 
on others, providing insights into the outbound influence 
of the nodes. This approach helps in understanding how 
much a node contributes to the importance of the nodes it 
points to, effectively quantifying its role in spreading 
influence. In our analysis, we utilize both right and left 
eigenvector centrality to evaluate the dual nature of influ-
ence in the backbone network of optimized weights de-
rived from heat equation approach—how nodes receive 
influence and how they exert influence on others, provid-
ing a comprehensive picture of their roles in the network 
dynamics of heat transfer.

2.6.3. Edge Betweenness Centrality
Edge Betweenness Centrality is a measure used to 

identify the importance of edges in a network by evaluat-
ing their role in shortest paths between node pairs 
[Brandes, 2008]. Specifically, the edge betweenness cen-
trality of an edge  is defined as the sum of the fraction of 
all-pairs shortest paths that pass through edge . If   
represents the number of shortest paths between nodes  
and , and  represents the number of those paths that 
pass through edge , the edge betweenness centrality   is given by:

 

 ≠
  (9)

 
This measure is particularly useful for understanding 

which connections (edges) in the network are critical for 
maintaining communication between various nodes. 

High edge betweenness indicates that an edge acts as a 
bridge that connects different parts of the network, sug-
gesting its crucial role in maintaining network cohesion. 
In our analysis, we calculated edge betweenness central-
ity for each edge to determine the most influential con-
nections in the community network. Edges with high 
edge betweenness are often critical for the flow of in-
formation or other types of interactions within the net-
work, as they participate in a significant portion of the 
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shortest paths. This is particularly relevant in under-
standing the role of certain routes in spreading influence 
across the network and in identifying potential bottle-
necks that could disrupt connectivity if removed. By 
identifying edges with high betweenness, we can gain in-
sights into the overall resilience and structure of the 
network.

3. Results

3.1. Regions with strong inward and outward 
weights from heat equation approach

Fig. 1 demonstrates significant spatial variation in the 
adjusted inward and outward flow weights derived from 
the heat equation approach. Regions A (the North Pacific) 
and B (the Indian Ocean) in panel (a) are characterized by 
high inward flow, suggesting a possible strong heat con-
centration of influences within these areas. Conversely, 
regions A, C (ENSO), D (NAWH), and E (the Southern 
Atlantic Ocean) in panel (b) exhibit high outward flow, 
indicating that these areas might act as major sources of 
heat transfer, distributing their heat flow across the 
network. The black arrows in both panels illustrate the 
sum of directional flows for each point, providing in-
sights into the overall movement dynamics. Specifically, 
the directional vector at each location , denoted as  , is 
determined by its relationship with surrounding nodes 
positioned in the eight directions around —namely, be-
low, left, right, and the four diagonal directions. For each 
pair  , the location vectors for , and  are represented 
as  , and  , respectively. From the location vectors, the 
unit vector representing the direction from  to  is de-

noted as    . By using  as the weight asso-
ciated with the direction from  to , we can define the 
weighted sum at location  as follows:

 

  
 

(10)

 

These directional relationships highlight key regions 
that play crucial roles in the inward and outward heat 
transfer, which may have implications for understanding 
underlying processes such as oceanic circulation or cli-
mate phenomena.

For example, regions B, D, and E, located in the Indian 
Ocean, the North, and South Atlantic Ocean, respectively, 
are known for their interrelated heat transfer interactions 
(Hu and Fedorov, 2020; Yang et al., 2022). These regions 
are highlighted in Fig. 1a and Fig. 1b, showing strong in-
ward flow for region B and a strong outward flow for re-
gion E. Additionally, the North Atlantic Warming Hole 
(NAWH) is marked as region D in Fig. 1 b, showing strong 
outward flows. Given that the causes of the NAWH are 
still under debate, this result offers a new perspective on 
the oceanic heat transfer interactions related to this phe-
nomenon and its connection to other sea regions.

Moreover, the primary region of El Niño-Southern 
Oscillation (ENSO) in the Pacific Ocean is highlighted as 
region C, indicating a strong outward flow in Fig. 1b. This 
result demonstrates that the weights derived from the heat 
equation can capture directional heat transfer relation-
ships, which have been limited in conventional analyses.

Fig. 1. Adjusted inward and outward weights derived from the heat equation approach. The weights Wij from the heat equation 
method have been adjusted to range from 0 (blue) to 2 (red). Panel (a) illustrates the adjusted inward weights, while panel (b) 
shows the adjusted outward weights. The black arrows represent the sum of flow directions at each point’s surrounding positions. 
High inward flow regions are indicated as regions A and B in panel (a), while high outward flow regions are labeled as regions 
A, C, D, and E in panel (b).
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3.2. Structural and Spatial Characteristics of 
Backbone Network

Since the heat equation approach provides directional 
weights of heat transfer flows, one can analyze direc-
tional relationships by transforming them into a heat 
transfer weight network. While the structural analysis of 
directional and weighted network can reveal crucial in-
sights into the connectivity patterns and spatial relation-
ships within the oceanic heat transfer network, its dense 
connectivity can obscure the identification of primary 
structures. Therefore, extracting the backbone network is 

essential to focus on the most significant connections and 
better understand the key components of the system. To 
this end, we applied a backboning algorithm (see Methods, 
(Serrano et al., 2009)) to extract statistically significant 
weighted links.

The in-degree and out-degree distributions of the origi-
nal network show a characteristic pattern that can be 
well-described by a log-normal distribution (Fig. 2a). This 
type of distribution may indicate highly heterogeneous 
connectivity, with a few nodes having substantially more 
links than others, depending on the mean and standard 

Fig. 2. Structural characteristics of the backbone network derived from directional weights. (a) The in-degree and out-degree 
distributions of the original network derived from the directional and weighted interactions shown in Fig. 1. Circle markers indicate 
the empirically observed frequency of the number of outgoing links, while triangle markers represent the number of incoming 
links. The grey and red solid lines show the log-normal fits for the outgoing and incoming links, respectively. (b) Degree distributions 
of the original correlation networks (on log-log axes), with tail-part fitting applied to the distributions. (c)The distribution of the 
number of in-degree and out-degree for the backbone network (α = 0.1, see Methods), with markers indicating the relative frequency 
of each type of degrees, are shown. The fitted tail distributions are shown with dashed lines in red (for in-degree) and grey (for 
out-degree). (d) Geodesic distance distribution between nodes, calculated based on the center of each cell within the backbone 
network, highlighting the spatial relationships between nodes. The distances range from 10 km to 20,000 km. The vertical dotted 
line indicates the starting point of the second peak in long-range distances between nodes (≥3,500 km).
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deviation. To assess the heterogeneity of in-degree and 
out-degree distributions, we performed power-law fitting 
on their tails (Fig. 2b). As observed, the in-degree dis-
tribution exhibits an exponent close to 2, demonstrating a 
heavy-tail tendency. In contrast, the out-degree tail shows 
an exponent close to 9, which is relatively large and less 
characteristic of a heavy-tail property. A distribution like 
in-degree distribution is typical in natural systems, where 
certain regions play a dominant role in either collecting 
or distributing influence, further emphasizing the com-
plex dynamics of heat transfer within the ocean. 

On the other hand, the in-degree and out-degree dis-
tributions of the backbone network exhibit power-law be-
havior, with exponent of 5.74 and 4.37, respectively, as 
shown in Fig. 2c. Due to the large exponent values, it is 
challenging to conclude that the distribution exhibits a 
heavy-tail property. However, this distribution still dem-
onstrates that, after extracting statistically significant 
links, a few nodes retain a large number of connections 
(more than links), while most nodes have fewer than 200 
links.

In terms of spatial characteristics of the backbone net-
work, Fig. 2d shows the geodesic distance distribution 
between nodes, revealing that connections between nodes 
span a wide range of distances, from localized interactions 
(10 km) to broader, ocean-basin scale connections (up to 
20,000 km). This diversity in connection lengths suggests 

a multiscale structure of heat transfer in sea regions, 
where both local and global interactions are essential for 
maintaining the heat transfer backbone network's overall 
connectivity. 

3.3. Communities in Backbone Network
To identify key regions and their connectivity patterns 

in the backbone network, we performed community de-
tection using the Louvain algorithm (see Methods). In 
particular, we used links spanning more than 3,500 km to 
focus on the long-range interactions between sea regions, 
as 3,500 km represents a starting point (a mid point be-
tween 3,000 km and 4,000 km) of the second peak in the 
distribution of long-range interactions (Fig. 2d). The com-
munity detection results in Fig. 3a reveal a clear structural 
organization within the backbone network, highlighting 
the distinct communities formed as a result of long-range 
directional heat transfer interactions.This structure is 
maintained when the distance criterion is 3,000 km. Panel 
(a) shows the complete set of communities within the 
backbone network, with the previously marked regions 
(A, B, C, D, and E) overlaid on the community structure. 
The detected communities, each represented by a differ-
ent color, exhibit unique spatial patterns, indicating the 
presence of highly interconnected regions across multiple 
scales of distance. This differentiation allows us to better 
understand how various parts of the ocean interact and 

Fig. 3. Community detection in the long-range backbone network and regional categorization. (a) Community structure of the 
entire long-range backbone network derived from the directional weights, with marks of previous regions labeled as A, B, C, 
D, and E. The detected communities are represented by different colors based on their community ID (from 0 to 11). (b-f) panels 
show detailed community distribution for each marked region: (b) Region A, (c) Region B, (d) Region C, (e) Region D, and (f) 
Region E. Each panel highlights the communities within the corresponding region, revealing the spatial distribution and boundaries 
of the identified communities.
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identify the dominant areas of influence in oceanic heat 
transfer. 

In the detailed views provided in panels (b) to (f), each 
region is analyzed individually to highlight its commun-
ity structure. Region A, as shown in panel (b), contains 
nine communities, including most of the communities ex-
cept for those in parts of the Indian and Pacific area 
(community 9) and the North Pole (community 10), each 
with distinct spatial boundaries. On the other hand, re-
gions B and C, as shown in Fig. 3c and 3d, include a rela-
tively smaller number of communities compared to re-
gion A. Notably, region B, which is primarily located in 
the Indian Ocean, includes communities 6, 9, and 11, 
which are part of the ENSO system. Additionally, this re-
gion contains community 2, and 6, which is largely re-
lated to the North Atlantic Ocean. Region C also high-
lights the ENSO system, including its relationships with 
the Indian and Atlantic Oceans.

Region D, which mostly represents the NAWH, is 
characterized by more diffuse community boundaries in-
volving communities 2, 6, and 7, possibly indicating a 
broader influence from all sea areas, including the near 
the South Pole area, and the Indian Ocean. In contrast, re-
gion E resembles region A, as it contains a large portion 
of the communities, including the North Pole area, sug-
gesting that the Southern Atlantic Ocean has a highly 
mixed influence from other sea communities. Overall, the 
spatial categorization of these communities reveals the 
multiscale nature of heat transfer in the ocean, high-
lighting previously reported crucial connections among 
the Indian, Atlantic, and Pacific Oceans.

3.4. Centralities of Communities with Total Weights 
and Averaged Weights 

To understand the directional and weighted flow be-
tween communities, we reconstructed the community net-

Fig. 4. Identification of key communities using betweenness centrality in the network of sea region communities. (a) A network 
between communities shows betweenness centrality measured for the communities (nodes), using average weights normalized 
by the number of links between them. Node colors represent the strength of each node (each community)'s betweenness centrality, 
with the top 10% of average weights (13 edges) highlighted in darker grey. (b) The top 3 communities with the highest betweenness 
centrality from (a) are shown. (c) Betweenness centrality on the same network as in (a) is calculated using total weights instead 
of average weights, with nodes colored according to their betweenness centrality. The top 10% of edges by total weight (13 edges) 
are also highlighted in darker grey. (d) The map highlights the top 3 regions with the highest betweenness centrality based on 
(c). The node size is determined based on the number of links, both incoming and outgoing.
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work by aggregating the directional weighted links be-
tween them (see Methods). In this network, each com-
munity is represented as a node, and all connections with-
in a community have been merged into a single directed 
weighted link to another community. When merging these 
links, we used both the average weights and the total 
weights as they represent different aspects of the relation-
ships between communities (see Methods). On this net-
workwe applied centrality measures to both nodes and 
edges, using network science techniques to identify the 
functional role of each community in sea surface heat 
transfer.

3.4.1. Betweenness Centrality
Fig. 4 highlights the identification of key communities 

within the network of oceanic communities using betwe-
enness centrality as a measure of importance (see Methods). 
Specifically, in panel (a), betweenness centrality was cal-
culated using average weights, which is normalized by 
the number of links, allowing us to determine which com-
munities play a central bridging role per unit link be-
tween different parts of the network. As shown in Fig. 4b, 
community 8, 11, and 9 play crucial roles as bridges con-
necting various other communities, with their representa-
tive region being the ENSO system. This result indicates 
the possibility that a significant portion of the ENSO sys-
tem may act as channels for heat transfer between other 
communities.

In panel (c), betweenness centrality was recalculated 
using total weights rather than average weights, providing 
insight into the overall influence of each oceanic com-
munity by considering the strength of all connections. 
Fig. 4d maps the top three regions (communities 3, 4, and 
11) with the highest betweenness centrality, which are 
primarily located in the South Polar areas and the periph-
ery parts of ENSO system. This result emphasizes their 
crucial function in global oceanic connectivity, partic-
ularly when considering their overall influence. These 
findings highlight the specific roles of oceanic commun-
ities, namely the ENSO system and polar regions, in heat 
distribution throughout the ocean. Considering the struc-
ture of community networks in Figs. 4a, and 4c, the ENSO 
system-related communities (4, 9, and 11) have relatively 
weak but diverse inward connections from most other 
communities in both cases, with particularly strong con-

nections between community 4 and communities 2, 5, 6, 
and 7 (closely related to the South Pole, Indian Ocean, 
and parts of the Pacific Ocean) in terms of total weights. 
Regarding the average weights, the ENSO-related com-
munities receive inward flows from communities 2, 5, 6, 
and 8 (which are more diffuse), and direct outflows to 
other communities (0, 6, and 7), which are located near 
the periphery of the ENSO system, as well as the Indian 
and Atlantic Oceans. This provides insight into the role of 
the ENSO system, suggesting that its crucial impact on 
oceanic and atmospheric dynamics may arise from its 
role as a bridge connecting various oceanic regions.

3.4.2. Outbound Eigenvector Centrality 
To understand the importance of sea communities in 

outgoing heat transfer, we analyzed the outbound ei-
genvector centrality. Fig. 5 highlights the key commun-
ities using outbound eigenvector centrality in the oceanic 
community network. Fig. 5a shows the outbound ei-
genvector centrality of each community with their inter-
actions, calculated using average weights. This approach 
allows us to determine which communities are most in-
fluential in transmitting heat flows to other parts of the 
network. Considering the measurement’s characteristic, one 
can see that communities 7, 2, and 8 have high influence 
to the system in terms of their outgoing heat transfer. 
These communities are related to a diffuse community 
spread across the globe, primarily in the Indian and Atlantic 
Oceans, with partial coverage in the Pacific Ocean, in-
dicating the importance of these oceanic systems in heat 
transfer (Fig. 5b).

In Fig. 5c, outbound eigenvector centrality was re-
calculated using total weights, providing insight into each 
oceanic community's comprehensive influence when con-
sidering all outgoing connections. The nodes are colored 
according to their recalculated centrality values, revealing 
how different regions contribute to the overall heat flow 
in the ocean. In the network with total weights shown in 
Fig. 5c, the communities with high outbound eigenvector 
centrality are communities 6, 4, and 2 (Fig. 5d). These 
communities consist of two types of regional character-
istics: two communities (communities 6 and 4) are close 
to the ENSO system, while another community (community 
2) represents a more dispersed community around the 
globe, with stronger connections to the North Atlantic 
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Ocean. This suggests that the North Atlantic Ocean and 
the outer part of the ENSO system may play a primary 
role in distributing heat flows throughout the oceanic 
system.

Examining the flow directions between these commun-
ities through Figs. 5c, it appears that community 6 directs 
its flow towards community 2 and 7, which are located 
near the ENSO system and also spread across the entire 
system. The fact that the community 11, representing the 
main parts of the ENSO system, does not rank high in 
outbound eigenvector centrality again suggests that its 
functional role may lie in bridging other oceanic regions, 
with the main outgoing flows likely originating from oth-
er oceanic regions near the ENSO system.

3.4.3. Inbound Eigenvector Centrality 
In contrast to the previous analysis, inbound ei-

genvector centrality can highlight important sea regions 
in terms of their incoming flows, and Fig. 6 depicts the 
key communities by applying inbound eigenvector cen-

trality within the oceanic community network. Panels (a) 
and (c) illustrate the inbound eigenvector centrality of 
each community, calculated using average weights and 
total weights, respectively. In panel (a), the average weights 
were used to determine which communities receive the 
most influence from their connected nodes, with nodes 
colored based on their centrality values. Communities 
with the highest inbound influence, such as communities 
2, 6, and 7, are primarily associated with parts of the North 
Pole, the periphery of ENSO region, and the Atlantic 
Ocean, suggesting that these areas can play a major role 
in receiving and concentrating heat flows from other re-
gions, considering their weight per unit link. 

In panel (c), inbound eigenvector centrality was re-
calculated using total weights to provide a broader under-
standing of the influence each community receives when 
considering the overall strength of all incoming connections. 
Communities with high inbound centrality in this analysis 
are more comprehensively linked, revealing which parts 
of the oceanic system act as major recipients of heat 

Fig. 5. Identification of key communities using outbound eigenvector centrality in the network of communities. (a, c) Networks 
illustrate outbound eigenvector centrality using average weights and total weights, respectively, with node colors representing 
the centrality values. The top 10% of average weights are highlighted in darker grey. (b, d) The top 3 communities based on the 
outbound eigenvector centrality from (a), and (c) are shown. The node size is determined based on the number of links, both incoming 
and outgoing.
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flows. The analysis shows that communities 7, 2, and 6 
exhibit high inbound eigenvector centrality, with most of 
these communities being widely distributed across the 
Atlantic and the near ENSO regions. One can notice that 
these key communities are the same as those identified by 
inbound eigenvector centrality with average weights, as 
shown in Figs. a and b, with only the order of the top 
communities being different. In particular, the reciprocal 
relationship between community 6 and 7 in Fig. 6d can 
be crucial, as this mutual heat transfer involves the Indian 
Ocean, the Atlantic Ocean, and the peripheral regions of 
the ENSO system as major contributors to heat accumu-
lation, driven by connections from various oceanic sources. 
Especially, the composition of communities 2 and 7 re-
quires further study, as they include three oceanic regions 
within the same community, which may exhibit synchro-
nous heat dynamics. Given that previous studies have re-
ported the crucial role of interactions between the Indian 
and Atlantic Oceans in ocean warming, along with a par-
tial role of the Pacific Ocean (Yang et al., 2022), these 

alignments of major inbound eigenvector centrality for 
key oceanic regions suggest that the global oceanic heat 
transfer network analyzed in this study could provide val-
uable insights into the functional roles of oceanic regions 
within the context of their interactions.

3.5. Functional Roles of Key Sea Regions 
Fig. 7a focuses on the community network encompass-

ing major oceanic regions—ENSO (community 11), Indian 
(community 8) and Atlantic Ocean (community 7), and 
the periphery of the ENSO system (community 6 and 9). 
The bidirectional links between these communities repre-
sent their mutual interactions (total weights), with asym-
metric weights on the relationships highlighted through 
distinct color. Red arrows indicate links where one direc-
tion has significantly stronger influence—at least 1.5 times 
greater than the other—while the strongest mutual links 
are highlighted in light blue. The results underscore the 
complex interplay among these regions, particularly em-
phasizing the dominant influences from the main ENSO 

Fig. 6. Identification of key communities using inbound eigenvector centrality in the network of communities. (a, c) Networks 
illustrate inbound eigenvector centrality using average weights and total weights, respectively, with node colors representing the 
centrality values. The top 10% of average weights are highlighted in darker grey. (b, d) The top 3 communities based on inbound 
eigenvector centrality from (a), and (c) are shown. The node size is determined based on the number of links, both incoming and 
outgoing.
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system (community 11) to the periphery of the ENSO sys-
tem (community 9), from the Indian Ocean (community 8) 
to the Atlantic Ocean (community 7), and from the Atlantic 
Ocean (community 7) to the periphery regions of the 
ENSO system (community 6). In addition to these con-
nections, interactions between communities 6 (peripheral 
regions of the ENSO system) and 11 (the main parts of 
the ENSO system) maintain strong mutual influences. 
These major connections demonstrate the strong correla-
tions among the ENSO, Atlantic, and Indian Oceans, sug-
gesting that these ocean regions act as critical hubs for 
balancing heat exchanges, with significant asymmetric in-
fluences involving the ENSO system and Indian Ocean.

Fig. 7b provides a deeper examination of the network 
by identifying edges with the top 10% edge betweenness 
values, representing the most significant pathways within 
the oceanic community network. The nodes are colored 
based on their outbound eigenvector centrality, and the 
layout is constructed using the hierarchical algorithm in 
Cytoscape, illustrating the heat flow among communities 
from top to bottom in the heat transfer network. The high 
edge betweenness values indicate the primary shortest 
paths that facilitate major heat exchanges between differ-
ent ocean regions. When we extract the edges with high 
edge betweenness, communities 4 (mostly in the Pacific 

Ocean), 7 (distributed in the Indian, Pacific, and the North 
Atlantic Ocean), and 8 (mainly in the Indian Ocean) are 
particularly prominent, suggesting their roles as essential 
conduits for thermal energy transfer. The hierarchical lay-
out used in this visualization further clarifies the network 
structure, emphasizing how regions like the peripheral 
areas of the ENSO system (e.g., community 9, 1, and 6), 
which link multiple major basins, act as central nodes in 
the oceanic heat transfer network. These findings suggest 
that the outer parts of the ENSO system and diffusive 
oceanic communities (e.g., community 4, 7, and 9) not 
only accumulate heat but also play a crucial role in redis-
tributing it globally, thereby contributing significantly to 
the regulation of global oceanic temperatures.

 

4. Conclusions and Discussions

In this study, we applied the heat equation approach to 
gain a comprehensive understanding of the complex oce-
anic heat transfer network and the functional roles of var-
ious oceanic regions. Since the heat equation approach 
provides directional and weighted flows between regions, 
it allows for the examination of the spatial distribution of 
inward and outward heat flows through these informative 
interactions, highlighting regions with significant heat 

Fig. 7. Functional roles of major sea regions in community networks. (a) Five communities representing five ocean regions are 
extracted from sea community network with total weights: 6 (ENSO), 7 (Indian and Atlantic Oceans), 8 (Indian Ocean), 9 (Indian 
and ENSO), and 11 (ENSO). Each pair of nodes has bidirectional links, and links with asymmetric weights are highlighted with 
different colors. A link with a stronger weight that is at least 1.5 times greater than the weaker link’s weight is shown in red (weaker 
is in orange). The strongest bidirectional links are colored in light blue. (b) Edges with the top 10% edge betweenness values 
(ranges from 0 to 0.44) are displayed. A hierarchical layout from Cytoscape is used, with node colors and sizes are based on outbound 
eigenvector centrality. The node size is determined based on the number of links, both incoming and outgoing.
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transfer activity such as the ENSO system and the North 
Atlantic Warming Hole (NAWH). To capture high-level 
regional interactions, we extracted the backbone network 
structure and performed community detection, identifying 
key oceanic communities and their interconnections. By 
focusing on previously reported interactions between key 
oceanic regions in ocean warming, betweenness centrality 
and outbound/inbound eigenvector centrality analyses 
highlighted critical pathways and influential regional no-
des within the network. In particular, the communities 
linked to the ENSO system and polar areas appear to play 
a critical bridging role in the heat transfer network. The 
periphery of ENSO system also conducts an important 
role in terms of the inbound and outbound eigenvector 
centrality. The strong relationships among key oceanic 
communities of the ENSO system, the Indian Ocean, and 
the Atlantic Ocean were further analyzed in an extracted 
network, demonstrating that the regions serve as crucial 
hubs for both accumulating and redistributing heat with 
their mutual interactions. These findings collectively un-
derscore the functional roles of major oceanic regions, 
such as the ENSO system, Indian Ocean, and polar areas, 
in facilitating global heat transfer, maintaining oceanic 
temperature dynamics, and contributing to climate stabil-
ity through their complex interactions. 

However, the community detection in this study could 
be improved, as detecting communities in directed net-
works is inherently complex due to the separation of source 
and target nodes (Leicht et al., 2008; Kim et al., 2010). 
Considering this, the current methodology could be fur-
ther enhanced, with this study serving as an initial step to-
ward testing the validity of the complex systems ap-
proach in understanding relationships between sea re-
gions based on SST correlations. This work may also pro-
vide a new perspective for analyzing complex climate 
interactions.

 

Acknowledgements

This research was supported by Global - Learning & 
Academic research institution for Master’s·PhD students, 
and Postdocs (LAMP) Program of the National Research 
Foundation of Korea (NRF) grant funded by the Ministry 
of Education (No. RS-2023-00301702). We appreciate the 
productive discussion with Prof. Mi Jin Lee at Hanyang 

University.
 

REFERENCES

Blondel, V.D., Guillaume, J.L., Lambiotte, R. and Lefebvre, E., 
2008, Fast unfolding of communities in large networks. Journal 
of Statistical Mechanics: Theory and Experiment, P10008.

Boers, N., Goswami, B., Rheinwalt, A., Bookhagen, B., Hoskins, 
B. and Kurths, J., 2019, Complex networks reveal global pattern 
of extreme-rainfall teleconnections. Nature, 566, 373-377, 
https://doi.org/10.1038/s41586-018-0872-x.

Bonacich, P., 1972, Factoring and weighting approaches to status 
scores and clique identification. Journal of Mathematical 
Sociology, 2, 113-120.

Brandes, U., 2008, On variants of shortest-path betweenness cen-
trality and their generic computation. Social Networks, 30, 
136-145, https://doi.org/10.1016/j.socnet.2007.11.001.

Clement, A.C., Goes, L.M., Cane, M.A. and Klavans, J.M., 2018, 
Testing the role of the ocean in historical simulations of Atlantic 
multidecadal variability and the North Atlantic warming hole. 
AGU Fall Meeting, A54C-09.

Deser, C., Alexander, M.A., Xie, S.P. and Phillips, A.S., 2010, Sea 
surface temperature variability, Patterns and mechanisms. 
Annual Review of Marine Science, 2, 115-143.

Dugué, N. and Perez, A., 2015, Directed Louvain: Maximizing 
modularity in directed networks: Research Report. Université 
d'Orléans, (hal-01231784).

Freeman, L.C., 1977, A set of measures of centrality based on 
betweenness. Sociometry, 40, 35-41.

Hu, S. and Fedorov, A.V., 2020, Indian Ocean warming as a driver 
of the North Atlantic warming hole. Nature Communications, 
11, 4785, https://doi.org/10.1038/s41467-020-18522-5.

Josey, S.A., De Jong, M.F., Oltmanns, M., Moore, G.K. and Weller, 
R.A., 2019, Extreme variability in Irminger Sea winter heat loss 
revealed by Ocean Observatories Initiative mooring and the 
ERA5 reanalysis. Geophysical Research Letters, 46, 293-302.

Kim, Y., Son, S.-W. and Jeong, H., 2010, Large-scale quantitative 
analysis of painting arts. Physical Review E, 81, 016103, 
https://doi.org/10.1103/PhysRevE.81.016103.

Lapointe, F., Bradley, R.S., Francus, P., Balascio, N.L., Abbott, 
M.B., Stoner, J.S., St-Onge, G., De Coninck, A. and Labarre, 
T., 2020, Annually resolved Atlantic sea surface temperature 
variability over the past 2,900 years. Proceedings of the National 
Academy of Sciences, 117, 27171-27178, https://doi.org/10 
.1073/pnas.2014166117.

Leicht, E.A. and Newman, M.E.J., 2008, Community structure in 
directed networks. Physical Review Letters, 100, 118703, https:// 
doi.org/10.1103/PhysRevLett.100.118703.

Lozier, S., Li, L. and Li, F., 2019, The North Atlantic "Cold Blob": 
An alternate explanation. EGU General Assembly, 21, 1 p.

McPhaden, M.J., Zebiak, S.E. and Glantz, M.H., 2006, ENSO as 
an integrating concept in Earth science. Science, 314, 1740- 
1745, https://doi.org/10.1126/science.1132588.

Newman, M.E.J., 2018, Networks (2nd ed.). Oxford University Press.
NOAA Office of Satellite and Product Operations, 2024, Sea 



447네트워크 과학 접근을 활용한 해수면 온도의 지역 간 상호작용 분석

Surface Temperature (SST). Retrieved from https://www.ospo. 
noaa.gov/products/ocean/sst.html (accessed March, 2024).

Peng, Q., Xie, S.-P., Passalacqua, G.A., Miyamoto, A. and Deser, 
C., 2024, The 2023 extreme coastal El Niño: Atmospheric and 
air-sea coupling mechanisms. Science Advances, 10, eadk8646, 
https://doi.org/10.1126/sciadv.adk8646.

Robertson, A.W., Mechoso, C.R. and Kim, Y., 2000, The influence 
of Atlantic sea surface temperature anomalies on the North 
Atlantic Oscillation. Journal of Climate, 13, 122-138, https: 

//doi.org/10.1175/1520-0442(2000)013<0122>2.0.CO;2.
Serrano, M.Á., Boguñá, M. and Vespignani, A., 2009, Extracting 

the multiscale backbone of complex weighted networks. Proceedings 
of the National Academy of Sciences, 106, 6483-6488, https:// 
doi.org/10.1073/pnas.0808904106.

Yang, Y.M., Park, J.H., An, S.I. and Kim, S.K., 2022, Increased 
Indian Ocean-North Atlantic Ocean warming chain under green-
house warming. Nature Communications, 13, 3978, https://do-
i.org/10.1038/s41467-022-31676-8.




	빈 페이지

