

ISSN 0435-4036 (Print) ISSN 2288-7377 (Online)

# 군위군 동부 고로화산암복합체의 SHRIMP 저어콘 U-Pb 연령과 칼데라 형성과정

황상구<sup>1,‡</sup> · 안웅산<sup>2</sup> · 윤운상<sup>3</sup> · 이기욱<sup>4</sup> · 고경태<sup>5</sup> <sup>1</sup>안동대학교 지구환경과학과 <sup>2</sup>제주특별자치도 세계유산본부

<sup>3</sup>주식회사 넥스지오 <sup>4</sup>한국기초과학지원연구원 환경분석연구부 <sup>5</sup>한국지질자원연구원 국토지질연구본부

# SHRIMP zircon U-Pb ages and Caldera formation process of the Goro volcanic complex in Eastern Gunwi, Korea

Sang Koo Hwang<sup>1,†</sup> · Ung San Ahn<sup>2</sup> · Woon Sang Yoon<sup>3</sup> · Keewook Yi<sup>4</sup> · Kyoungtae Ko<sup>5</sup>

<sup>1</sup>Department of Earth and Environmental Science, Andong National University, Andong 36729, Republic of Korea <sup>2</sup>World Heritage Office, Jeju Special Self-govering Provincial Government, Jeju 63341, Republic of Korea <sup>3</sup>NexGeo Inc. Co., Seoul 05703, Republic of Korea

<sup>4</sup>Korea Basic Science Institute, Ochang 28119, Republic of Korea <sup>5</sup>Korea Institute of Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea

#### 요 약

군위군 동부에 위치한 군위댐 주변에는 화산(華山) 칼데라가 백악기 퇴적암류 내에 존재한다. 이 칼데라는 규장질 화산암류와 연관되는 칼데라 중의 하나로서 칼데라와 화산과정을 정확하게 엮을 수 있는 점에서 매우 중요하다. 칼데라 주변에서 화성암류는 어봉산암주, 선암산응회암, 고로화산암복합체와 기타 심성암 순으로 구 분된다. 고로화산암복합체는 대부분 유문암질 회류응회암으로 구성되지만, 안산암질 응회암 및 용암의 협재와 산출상태에 의해 하부 안산암질 응회암 및 용암, 하부 유문암질 응회암, 응회암맥, 상부 안산암질 용암, 상부 유 문암질 응회암 및 각력암, 각력암 플러그와 유문암맥 순으로 세분된다. 이들에 대한 SHRIMP 저어콘 U-Pb 연 령측정은 화성암류의 분출 혹은 관입시기와 층서관계를 확실하게 해준다. 측정 결과는 고로화산암복합체의 하 부 유문암질 응회암에서 64.3±0.5 Ma, 응회암맥에서 64.7±0.5 Ma, 상부 유문암질 응회암에서 63.9±0.5 Ma의 분출 혹은 관입 연령을, 화강암맥에서 63.6±0.6 Ma의 관입 연령을 구하였다. 따라서 이 모든 사건은 고원기 팔 레오세 다니아절에 일어났다. 이들 자료는 응회암맥이 일차의 대규모 회류 분출에 따른 하부 유문암질 응회암 으로 인하여 발생한 외측 환상단층을 통해 관입되었고, 화강암맥은 유문암맥과 더불어 2차의 대규모 회류 분출 에 따른 상부 유문암질 응회암과 각력암을 뒤따라 발생한 내측 환상단열대를 통해 관입된 마지막 관입체임을 지시한다. 화산 칼데라에서 내측 환상단열대는 선기 칼데라 내에 동심원상으로 형성된 후기의 작은 칼데라를 의미한다. 그러므로 화산 칼데라는 분출·함몰·환상암맥 형성과정을 2회 겪은 둥지상 칼데라를 나타낸다.

주요어: 군위댐, 화산 칼데라, SHRIMP 연대측정, 응회암맥, 환상암맥

**ABSTRACT:** Around the Gunwi Dam in the eastern Gunwi area, the Hwasan caldera appears within Cretaceous sedimentary rocks. The caldera is associated with felsic volcanic rocks, and is important for unraveling the genetic relationship between the caldera and volcanic processes. Igneous rocks around the caldera include Eobongsan Stock, Seonamsan Tuff, Goro Volcanic Complex and other plutonic rocks in stratigraphic order. The Goro Volcanic

<sup>&</sup>lt;sup>†</sup>Corresponding author: +82-54-820-5469, E-mail: hwangsk@anu.ac.kr

Complex is almost composed of ash-flow tuffs, but is subdivided into lower andesitic tuffs and lavas, lower rhyolitic tuffs, tuff dikes, upper andesitic lavas, upper rhyolitic tuffs and breccias, breccia plug and rhyolite dikes on the basis of the intercalation and occurrence mode of andesitic tuffs and/or lavas. Their eruption or intrusion timing and stratigraphic relationship can be confirmed by the SHRIMP zircon U-Pb dating. The dating yielded the eruption or intrusion ages of  $64.3\pm0.5$  Ma for the lower rhyolitic tuffs,  $64.7\pm0.5$  Ma for the tuff dikes and  $63.9\pm0.5$  Ma for the upper rhyolitic tuffs and breccias in the Goro Volcanic Complex, and an intrusion age of  $63.6\pm0.6$  Ma for granitic dykes. All of the igneous activities occurred in the Danian of the Paleocene, Paleogene. These data suggest that the tuff dikes were intruded along the outer ring faults in association with subsidence of the lower rhyolitic tuffs that formed from primary voluminous ash-flow eruptions, and further indicate that the rhyolite and granite dikes were finally intruded through the inner ring fractures that resulted from secondary large eruptions of the upper rhyolitic tuffs and breccias. The inner ring fracture zone in the Hwasan caldera thus represents a small caldera developing concentrically in the preexisting one. Therefore, the Hwasan caldera is a nested caldera with two cycles of pyroclastic flow-caldera collapse-ring intrusion.

Key words: Gunwi Dam, Hwasan caldera, SHRIMP dating, tuff dike, ring dike

# 1. 서 언

한반도에서 백악기 및 고원기 화산암체는 환상복 합체(ring complex)로 여러 군데 존재하는데 모두 화산활동에 의한 환상암맥(ring dike)을 갖추고 있 으며, 이를 함몰체라 칭했던 경우도 있고(Cha and Yun, 1988) 혹은 칼데라로 불렀던 경우도 있다. 한반도에 서 관찰되는 화산 함몰체 각각에 대한 형성 원인과 과정에 관해서는 연구가 아직 미진한 편이다. 화산 에서 형성되는 지질 구조중 하나인 환상복합체는 화 산-심성 침하계에 속하는 것으로 칼데라와 마그마 챔버 사이에 지반침하로 형성된 모든 지질학적 구성 요소를 말하는 것이다(Shannon, 1988). 여기에는 칼 데라와 마그마 챔버 사이의 환상단열대, 환상암맥, 콜드론, 환상단층이 포함된다(e.g., Turner, 1963; Smith and Bailey, 1968; Walker, 1975; Oftedahl, 1978; Dodge, 1979; Lipman, 1984).

칼데라는 원형의 화산 저지로, 화구의 수배 이상 직경을 가지고, 그 아래 마그마챔버로 지붕 함몰에 의해 형성된 것을 말한다(Lipman, 2000; Cole *et al*, 2005). 다량의 마그마 분출로 인해 마그마챔버의 압 력이 낮아지면 화구를 중심으로 생긴 환상단열대를 따라 원통상 블록이 함몰되고, 환상단열대를 따라 마그마가 유입되며 환상암맥이 형성되기도 한다. 콜 드론(cauldron)은 마그마챔버 위에서 솥 모양으로 갈라진 블록이 챔버 내로의 침하 결과로 형성된 것 이다(Williams and McBirney, 1979; Komuro, 1987). 이러한 블록의 침하는 마그마 분출이 아니더라도 지 하에서 마그마의 퇴각으로 일어날 수 있다(Billings,

1972; Myers, 1975). 마그마의 정수압이 모암의 정 암압보다 작다면, 이때도 지하에서 단열대가 엎어진 솥 모양으로 형성되어 이 블록이 마그마 속으로 내 려앉고 단열대로 마그마가 채워짐으로써 환상암맥 이 함께 형성된다(Clough et al., 1909; Anderson, 1936; Billings, 1972; Myers, 1975). 환상암맥은 평면에서 원상, 계란상, 다각상 혹은 호상일 수 있는 부조화적 관입체이며 거의 수직에 가깝게 외측경사를 나타내 는 접촉부를 가진다. 암맥 두께는 다양하나 몇 km까 지 달할 수도 있다. 암상은 일반적으로 규장질이며 냉각 구조는 보여주지 않는다. 환상복합체는 원추암 상(cone sheet) 혹은/및 환상암맥을 포함하는 관입 복합체를 기재하는데 사용되는 일반적인 용어이지 만, 이 용어는 평면도에서 원상, 계란상, 다각상 혹 은 호상 관입체를 가지는 어떤 관입복합체를 기재하 기 위해 느슨하게 사용될 수도 있다. 환상복합체는 칼데라 아래에 놓이고 심성암체 위에 위치한다(e.g., Williams, 1941; Billings, 1945; Smith and Bailey, 1968; Bussell et al., 1976; Oftedahl, 1978; Bonin, 1986).

백악기 경상분지 중 하나인 의성소분지에도 이전 부터 6개의 화산암체를 중심으로 환상암맥이 포함 된 환상복합체와 함몰체을 중심으로 화산체의 존재 가보고되었다(Chang, 1978; Won *et al.*, 1980; Cha and Yun, 1988; Hwang and Kim, 1999; Hwang, 2002). 이후 이 함몰체들에 대한 연구 결과에 의하면 함몰 체는 그 원인이 칼데라 함몰(caldera collapse)에 있 다고 결론 짓고 그 함몰과정을 엮어낸 바 있다(Cha and Yun, 1988). 따라서 이 함몰체의 형성 원인이 콜드론 침하(cauldron subsidence)에 의하기보다 칼 데라 함몰에 있다고 밝혀졌다면 함몰체로 부르기보 다 칼데라로 하는 것이 더 옳은 선택이고 현장감을 더해준다.

경상북도 군위군의 동부에 위치하는 군위댐 주변 에는 화산(華山) 칼데라가 백악기 퇴적암 지층들 사 이에 존재한다. 이 칼데라는 의성소분지의 규장질 화산암류의 분출과 연관되어 있으며, 원통형cylindrical), 하향자루형(down-sagging), 뚜껑문형(trapdoor)와 둥지형(nested) 칼데라 등의 구조적 형태와 그 형성과정을 정확하게 엮을 수 있는 점에서 매우 중요하다. 화산 칼데라는 군위군 고로면을 중심으로 하여 거의 원형의 함몰구조로 나타나며 그 중앙부에 두꺼운 회류응회암(ash-flow tuff)과 더불어 여러 암 상의 화산암류가 분포하고 있다(그림 1). 화산 지역 의 칼데라 함몰로 인하여 만들어진 다양한 지질구조 는 이미 연구되었지만(Yun, 1988), 세부적인 화산층 서 확립과 연령측정 연구는 이뤄지지 못하였다. 따 라서 2003년 군위댐 타당성 조사를 하면서 이 지역 화산암류에 대해 중점적으로 조사한 결과 정확한 화

산층서를 수립하게 되었고, 최근에 이 암석들로부터 저어콘을 분리하여 SHRIMP U-Pb 연령측정을 수 행할 수 있었다. 따라서 세부적인 화산암 층서조사 결과와 SHRIMP 연령측정 결과를 엮어 최종적으로 환상 함몰구조에 대한 형성과정에 대해서 논해보고 자 한다.

#### 2. 지질개요

화산 칼데라는 의성소분지의 의성과 영천 사이에 서 인식되는 3개의 칼데라 중에서 가장 남동쪽에 위 치한다. 이 칼데라는 백악기 말기에 형성된 화산암 류 아래의 천부에 정치된 심성암체 위에 형성된 것 으로 해석된다(Yun, 1988). 칼데라 주변 일대의 지 질은 백악기의 하양층군 퇴적암류, 화산암류, 그리 고 심성암류로 구성된다. 하양층군 퇴적암류는 하부 로부터 후평동층, 점곡층, 사곡층, 구산동응회암, 춘 산층(혹은 반야월층)과 신양동층(혹은 화산층)으로 구성되고 화산암체에 가까워질수록 젊어지는 경향 이다(그림 1).



Fig. 1. Geological map around the Hwasan caldera, showing locality of samples for the SHRIMP U-Pb zircon dating. Index map shows the range of Yeongyang (Y), Uiseong (U) and Yucheon (YC) sub-basins in the Kyeongsang Basin.

화산암류는 선암산응회암과 고로화산암복합체로 구분된다. 고로화산암복합체는 대부분 유문암질 응 회암층으로 구성되는데, 이 유문암질 응회암은 대부 분 회류응회암(ash-flow tuff)으로 구성되고 그 사이 에 강하응회암(fallout tuff)과 안산암질 응회암 및 용암이 협재된다. 따라서 고로화산암복합체는 하부 로부터 하부 안산암질 응회암 및 용암, 하부 유문암 질 응회암, 응회암맥, 상부 안산암질 용암, 상부 유 문암질 응회암 및 각력암, 각력암 플러그와 유문암 맥 순으로 세분된다(그림 1). 응회암맥과 유문암맥 은 칼데라 단열대를 따라 정치한 관입체로서 마그마 챔버로 연결되는 화산 뿌리이고 각력암 플러그는 중 앙 화구를 충전한 화산 잔류물이다.

심성암류는 암상에 따라 어봉산암주, 반려암과 화 강암로 구분된다. 어봉산암주는 구산동도폭에서 석 영몬조니암, 화강섬록암, 화강섬록반암 및 안산암질 암으로 기재하였고(Chang *et al.*, 1977), 신령도폭에 서 흑운모 화강암으로 기재하였다(Won *et al.*, 1980). 그러나 이 암주는 대부분 흑운모 화강암으로 구성되 며, 암회색의 고철질 미립상 포유체(mafic microgranular enclave)들이 곳곳에 산재하여 마치 섬록암질 각력 암과 같은 흔화(mingling) 양상을 나타낸다(그림 2a). 이중 흑운모 화강암으로부터 구한 SHRIMP 저어콘 U-Pb 연령(76.9±0.9 Ma)에 의하면 암주는 주변의 퇴적암류 퇴적시기와 화산암류 분출시기 사이에 관 입 정치한 것으로 판단된다(Hwang *et al.*, 2017).

#### 3. 칼데라 화산암류의 세부 지질

주요 연구대상인 화산 칼데라 일대에 분포하는 화산암류는 크게 선암산응회암, 고로화산암복합체 로 구성된다. 이 중 고로화산암복합체는 칼데라 내 부에 분포하는 화산암류를 총칭하는 것이다.

#### 3.1 선암산응회암

선암산응회암은 칼데라 외곽 북부에 대부분 분포 하고 내부에도 소규모로 분포하며 신양동층을 부정 합으로 피복하고 있다(그림 1). 이 응회암은 대부분 유문데사이트질 회류응회암이고 상부로 가면서 용 결도가 커지고 용결엽리의 발달이 쉽게 관찰된다 (그림 2b).

본암은 회백색을 띠며 신선한 부분은 규장암으로

오인될 정도로 치밀해 보이며 풍화된 표면은 화성쇄 설조직을 잘 보여준다. 본 응회암은 크게 암편, 기 질, 반정으로 구성되어 있다. 암편은 주로 유백색을 나타내고 기질은 담회색 내지 녹회색을 띤다. 암편 은 유문암이 주를 이루고 그 외에 이질암과 현무암 암편도 존재한다. 반정은 사장석, 석영과 알칼리장 석이 포함되며 암편이 적은 곳에서 쉽게 인지된다. 본암은 담회색 내지 담갈색을 띠는 경우에 루폐를 통해 석영 반정이 식별되지만 회색 내지 녹회색을 띠는 경우에 석영 반정의 식별이 맨눈으로 곤란한 경우가 대부분이다. 본암은 하부에서 용결엽리가 발 달되지 않지만 상부에서 편평화된 부석(fiamme)의 배열에 의한 완배열상 석리(eutaxitic fabric)를 나타 내며 이로부터 용결엽리를 인지할 수 있다(그림 2b).

#### 3.2 고로화산암복합체

고로화산암복합체는 칼데라 내에서 선암산응회 암 위에 정합적으로 놓인다. 이 복합체는 대부분 유 문암질 회류응회암으로 구성되지만 산출상태에 따 라서 세부적으로는 하부 안산암질 응회암 및 용암, 하부 유문암질 응회암, 응회암맥, 상부 안산암질 용 암, 상부 유문암질 응회암 및 각력암, 각력암 플러그 와 유문암맥으로 구분할 수 있다.

#### 3.2.1 하부 안산암질 용암 및 응회암

이 암층은 대부분 칼데라 북부에 동서 및 남북 방 향으로 분포되며, 선암산응회암 위에 정합적으로 놓 이고 하부 회류응회암에 의해 정합적으로 덮인다 (그림 1). 대부분 안산암질의 용암으로 구성되나 하 부에 얇은 응회암이 협재된다. 이는 초기에 폭발성 분출과 용암분류(lava effusion)가 반복되다가 후기 에 용암분류 위주로 진행되었음을 나타낸다.

용암 자체는 암록색 내지 녹회색을 띠며 자형의 사장석 반정을 다량 함유하는 반상조직을 나타냄이 특징이다. 이들 반정은 평균 2×3 mm인 것이 가장 흔하고(최대 5 mm) 이들보다 작은 1×2 mm인 것도 종종 관찰된다(그림 2c). 이외에 1 mm 이내의 휘석 혹은 각섬석 반정도 관찰된다. 용암류(lava flow)로 서 상부 표면에 행인(amygdule)과 적갈색으로 산화 된 곳도 발견된다. 이 용암은 칼데라 북측 경계부에 서 방위가 EW, 60~80°S 정도이며, 두께는 동쪽에서 최고 약 350 m 정도이고 서쪽으로 가면서 20 m 이



**Fig. 2.** Outcrop photographs showing representative lithology of igneous rocks in the study area. (a) Mingling part in the Eobongsan Stock; (b) Welding foliation in ash-flow tuff of the Seonamsan Tuff; (c) Porphyritic texture in the lower andesitic lavas; (d) Fallout tuff in the lower rhyolitic tuffs; (e) Ash-flow tuff in the lower rhyolitic tuffs; (f) Ash-flow tuff in the upper rhyolitic tuffs and breccias; (g) Fallback breccia in the central breccia plug; (h) Subvertical flow foliation in the ring rhyolite dike intruding along the inner ring fractures.

내로 얇아진다.

#### **3.2.2 하부 유문암질 응회암**

이 응회암은 주로 칼데라 내부의 서부와 중서부 에 분포하며(그림 1), 하부의 얇은 강하응회암과 상 부의 회류응회암으로 구성된다. 강하응회암은 칼데 라 내부의 북부에 소규모로 노출되며, 모두 하부 안 산암질 용암 위에 놓이고 회류응회암에 의해 덮인 다. 두께는 2~10 m로서 얇다. 이 강하응회암층은 응 회암과 라필리응회암으로 구성되며 회백색 혹은 담 회색으로서 충리가 잘 발달되고 중·세립질로서 분 급이 양호하다(그림 2d).

회류응회암은 칼데라 내부의 중서부에 넓게 분포 하며, 하부 안산암질 용암 혹은 신양동층 위에 놓이 고 상부 안산암질 용암, 상부 유문암질 응회암에 의 해 덮인다. 그리고 화강암이 관입하고 있다(그림 1). 이 응회암층은 여러 회류단위로 구성되며 수 m 두 께의 강하응회암을 두 차례 협재한다. 두께는 최고 약 500 m 정도이지만 북동쪽으로 가면서 얇아지는 경향이다.

회류응회암은 담회색 내지 청록색을 띠고 주로 석영과 사장석 반정과 소량의 알칼리장석 반정을 함 유한다(그림 2e). 반정은 크기가 2~4 mm이고 9~20 %를 차지하기 때문에, 이 응회암은 결정비율이 높 은 파리질응회암(crystal-rich vitric tuff)으로, SiO<sub>2</sub> 함량이 67~73 wt.%로 매우 높기 때문에 유문암질 응회암으로 분류할 수 있다(Yun, 1988). 그러나 육 안 관찰에서 이 암석은 분급이 불량하고 대부분 괴 상을 나타내며 석영과 사장석 반정이 현저하므로 석 영반암으로 오인하기 쉽다. 이들은 곳에 따라 렌즈 모양으로 편평화된 부석을 산출한다. 따라서 지화학 분석, 육안관찰과 암석현미경 관찰을 활용하여 종합 적으로 판단해 보면 이 암층은 유체성이 적은 회류 에 의해 형성된 용결된 응회암으로 판단된다.

#### 3.2.3 응회암맥

응회암맥은 환상단층을 따라 여러 곳에서 원형의 환상 관입체로 노출되며 화산 칼데라의 외측 경계부 를 이루고 있다. 기존 연구자들은 야외 관찰을 근거 로 화강반암(Chang, 1978) 또는 석영반암(Won *et al.*, 1980)으로 기재하였지만, 반정 외에 암편과 부석편 을 함유하는 화성쇄설성 조직을 나타내기 때문에 결 정이 풍부한 유문암질 응회암을 나타낸다. 환상암맥 의 노출 규모는 화산 칼데라 남부에서 노고산-혈암 산-조림산으로 이어지는 최대 폭이 약 500 m이며 그 연장이 약 16 km에 달한다.

이 암맥은 결정의 비율이 높은 유문암질 응회암 이지만, 국부적으로 안산암을 포획하며 동질의 응회 암편을 드물게 수반하고 부석편도 포함한다. 퇴적암 과의 남측 접촉부는 환상단층으로 인해 부셔진 셰일 편으로 주로 구성된 단층각력암을 나타내기도 한다. 응회암맥에 포함된 안산암편은 하부 안산암질 용암 으로부터 기원했을 것으로 판단된다. 본암은 산출 위치에 따라서 중심부와 연변부에 따라 암편의 구성 비 차이가 심한 편이다.

암편의 크기는 대개 2~4 cm이지만 관입 접촉부 에서는 1~2 cm로 작아진다. 그러나 셰일 각력암을 형성한 접촉부에서는 5~15 cm로 훨씬 더 커지고 30 cm 이상에 달하는 것도 있다. 암편의 크기가 접촉부 에서 작아지는 것은 이곳을 따라 함몰이 연속되었음 을 의미한다. 암편의 모양은 셰일편이 각상 내지 아 각상이고 응회암편과 안산암편이 아원상 내지 원상 을 나타낸다. 기질은 미세한 화산회와 석영, 사장석, 알칼리장석, 흑운모 반정으로 구성되며, 반정 함량 은 대략 25% 정도로 많은 편이다.

이 응회암맥의 형성과정은 다음과 같이 설명할 수 있다. 고로화산암층의 회류응회암이 대량 분출됨 로 인해 환상단열대를 따라 지각의 함몰이 발생했 다. 이후 이 함몰체가 마그마챔버에 압력을 가함으 로서 마그마가 이 단열대의 환상단열을 따라 분출되 어 환상암맥이 형성되었다.

#### 3.2.4 상부 안산암질 용암

이 용암층은 칼데라 내부의 중북부 계곡부에 소 규모로 노출된다(그림 1). 이 용암층은 하부 유문암 질 응회암 위에 놓이고 상부 유문암질 각력암 아래 에 놓인다. 이 용암은 회색 내지 암녹색을 띠고 상부 표면에서는 암갈색을 띠는 일도 있으며 대체로 육안 으로 쉽게 반정이 관찰되지 않는다. 그러나 드물지 만 매우 작은 사장석 미정들이 관찰되는 곳도 있다.

#### 3.2.5 상부 유문암질 응회암 및 각력암

이 암층은 칼데라 내부의 중앙부와 북부에 분포 하며, 하부 유문암질 응회암 위에 놓이고 각력암 플 러그에 의해 관입된다(그림 1). 이들은 하부의 각력 암과 상부의 회류응회암으로 구성된다.

하부의 각력암은 주로 칼데라의 중앙부에서 상부 와 하부 유문암질 응회암 사이의 경계부를 따라 노 출된다(그림 1). 두께는 암체의 중앙부에서 100 m 이상으로 두껍지만 북부로 가면서 약 30 m로 얇아 지고 결국 수 m 이하로 얇아진다. 입도 분류에 따른 암상은 암체의 중앙부에서 각력암 내지 응회각력암 에 해당하지만, 가장자리로 갈수록 라필리응회암에 서 응회암으로 변화한다. 이러한 입도 변화는 두께 변화와 더불어 상부 유문암질 응회암과 함께 산출되 는 각력암의 중앙부가 칼데라의 중심부임을 의미한 다. 응회암에 해당하는 부분은 층리가 잘 발달되고 분급이 양호하며 여러 층준에서 작은 누적라필리를 함유한다. 라필리응회암 부분은 층리가 미약하고 상 향세립화되는 점이층리의 형태가 나타난다. 따라서 각력암 부분은 화쇄류가 이동할 때 무거운 암괴들이 화구 근처에 밀집하여 형성된 처진 응회각력암(lagfall tuff breccia)에 속한다.

상부의 회류응회암은 칼데라 중앙부에서 각력암 플러그가 관입하고 있으며, 북부에서 유문암맥이 관 입하고 있다(그림 1). 이 암층은 지역에 따라 암편의 함량이 달라서 여러 회류단위로 구성된 것으로 보이 나 회류 단위 사이에서 예상할 수 있는 강하응회암 은 발견되지 않았다. 두께는 암체의 동쪽에서 약 400 m 정도이지만 서쪽에서 300 m 이하로 얇아진 다. 이 회류응회암은 담황색 내지 회색을 띤다. 반정 은 주로 석영과 알칼리장석이지만 일부 사장석 반정 도 관찰된다. 반정 크기는 3~5 mm이고 함유량이 34~39% 정도이기 때문에 결정질응회암(crystal tuff) 으로 분류할 수 있다(그림 2f; Yun, 1988). 화학조성 도 SiO<sub>2</sub>가 67~73 wt.% 범위에 속하므로 유문암에 속한다(Yun, 1988). 이 결정응회암은 육안관찰에서 층리가 없는 괴상이기 때문에 화강반암처럼 보이기 도 한다. 드물긴 하지만 편평화된 부석이 관찰되기 때문에 용결되었음을 인지할 수 있다. 결론적으로, 이 응회암은 유체성이 매우 적은 회류에 의해 형성 된 용결 응회암으로 볼 수 있다.

#### 3.2.6 각력암 플러그

각력암 플러그는 회귀 응회각력암으로 구성되어 있으며, 이는 본역 중앙부에 거의 원형으로 분포되 며 하위의 신양동층과 상부 회류응회암을 관입한 양 상으로 나타난다. 또한 곳곳에서 유문암맥에 의해 관입되어 있다(그림 1).

이 플러그는 대부분 유문암질 화성쇄설암으로 구 성되며 이 암석에 유문암, 안산암, 셰일과 응회암의 암괴들이 포함되어 있다. 이 암괴들은 직경이 보통 10~30 cm이고 간혹 2 m 이상인 것도 있다. 입도에 따른 암상은 각력암 내지 응회각력암에 속하고 점이 적으로 라필리응회암으로 변하며 내부적으로 매우 불규칙하게 혼재되어 있다(그림 2g). 기질은 회백색 내지 회색의 화산회로 구성된다. 암괴를 제외한 기 질부의 암상은 라필리응회암과 유사하며 층리 등이 관찰되지는 않는다. 이 암상은 측방으로 연속성이 좋지 않고 수직으로는 상당히 두꺼운 렌즈상이다. 이러한 두께 차이는 원래 지형적 저지에서 상당히 두껍게 집적되고 고지에서 얇게 퇴적된 양상을 나타 낸다. 이 플러그의 동측부 경계면은 거의 수직에 가 까우며 경계면 주변에는 셰일편으로 구성된 각력암 이 수 m 폭으로 형성되어있다. 이 플러그는 거의 칼 데라의 중앙부에 위치하고 있기 때문에 중앙화구 지 역으로 볼 수 있다. 따라서, 화산 폭발시에 화구 위 로 떴던 1~2 m 내외의 많은 암괴들이 밖으로 이동 하지 못하고 화구로 낙하되어 각력암 플러그를 형성 했음을 지시한다. 그러므로 이 각력암은 회귀 각력 암(fall-back breccia)에 속하는 것으로 판단된다.

#### 3.2.7 유문암맥

유문암맥은 고로화산암복합체에서 최후기 암석 이다. 이 암맥은 칼데라의 북부에서 여러 가닥의 환 상암맥의 형태로 노출되며, 중앙부에 작은 암맥 내 지 플러그로 분포하고 있다(그림 1). 분포 위치와 형 태에 따르면 전자는 내측부 환상관입체이고 후자는 중앙관입체로 구분된다.

이 유문암은 담홍색 내지 홍회색을 띠고 대체로 유상엽리(flow foliation)가 발달했다(그림 2h). 일 부 노두에서는 구과상 구조도 관찰된다. 반정으로는 석영과 사장석이 드물게 나타나며 석기는 미정질 내 지 유리질이다. 야외에서 한 암체라도 측방으로 수 100 m 이내에서 색깔과 구조의 차이를 보이는 암상 변화를 나타낸다.

칼데라 북부에 위치한 환상암맥은 대개 유대상 유문암(flow-banded rhyolite)이다. 이 암맥은 백색 의 산악으로 보이고 대부분 절벽을 형성하기 때문에 쉽게 구분할 수 있다. 관입접촉부에서 유상엽리는 가끔 비대칭 유상습곡(flow fold)을 형성하여 이들의 이동방향을 제시해 주기도 한다(그림 2h). 용암류 경계부는 특히 이동할 때 자가각력작용(autobrecciation) 에 의해 형성된 유동각력암(flow breccia)도 흔히 관 참된다.

중앙관입체는 대개 유대상 유문암으로서 칼데라 중앙부를 중심으로 맥상 혹은 플러그 모양으로 관입 되어 돌출되어 있다. 이를 근거로, 중앙의 유문암맥 은 화산 칼데라가 함몰된 후 휘발성물질이 소진된 잔류 마그마가 중앙화구로 상승하면서 분류될 때 그 화도 부위인 것으로 판단된다.

#### 4. 심성암류

심성암류에는 동부와 중남부에 분포하고 감람석 반려암과 흑운모 화강암으로 구분된다(그림 1).

#### 4.1 반려암

반려암은 동부에서 2 km 폭을 갖는 작은 타원상 의 암주로 노출되며 춘산층을 관입하고 화강암에 의 해 관입된다(그림 1). 화강암과의 접촉부에서는 화 강암의 포획암으로도 발견된다. 이 암체의 서측부에 서는 유색광물이 적은 섬록암으로 점이되는 경향을 보여주고 광물 입자의 크기에 있어서는 더 조립질로 변한다. 본암은 암회색 내지 흑색을 띠며 조립질로 서 등립질이고 주 구성광물은 사장석, 감람석, 휘석 이고, 흑운모, 각섬석 등이 수반된다.

#### 4.2 화강암

화강암은 산출형태에 따라 화강암주와 화강암맥 으로 구분된다. 화강암주는 본역 동부에서 가음단층 을 따라 분포하고, 화강암맥은 칼데라 중남부에서 고로화산암복합체의 남측부를 따라 분포한다(그림 1). 이들은 춘산층, 신양동층과 고로화산암층과 반 려암을 관입하였다. 화강암체 주변의 퇴적암은 대략 관입접촉부로부터 5 km 반경까지 접촉변성작용을 받은 것으로 판단된다. 따라서 화강암은 지역의 암 석 중에 가장 젊은 암석으로 판단된다.

화강암주는 칼데라 외곽의 동부에서 2 km 정도 의 폭을 가지며 북서-남동 방향으로 가로지르는 단 층을 기준으로 두 부분으로 분리되어 있다. 화강암 맥은 대체로 신양동층과 하부 유문암질 응회암과의 경계부를 따라 관입하였으며, 지질도 상에 그 형태 가 대체로 환상암맥을 형성하고 있다. 이렇게 화강 암맥의 평면적 분포의 모습이 환상암맥의 형태를 나 타내기 때문에 단면의 형태 또한 수직으로 마그마챔 버까지 연결되어 있을 것으로 추정된다.

이 화강암맥은 중·조립질 등립상 조직을 보여주 며 주 구성광물로 석영, 사장석, 알칼리장석, 흑운 모, 각섬석 등이 존재한다. 화강암체 곳곳에서는 미 아롤리틱 구조(miarolitic structure)가 존재하기 때 문에 이 화강암의 생성 깊이가 천부임을 알 수 있다.

#### 5. 분석방법

연대측정에 이용된 시료는 위에 언급한 다양한 암 석 중에서 칼데라 형성과정을 이해하는 데 도움이 될 것으로 보이는 유문암질 응회암 3개와 화강암 하 나로 결정하였다. 3개의 유문암질 시료는 하부 유문 암질 응회암(GG17), 응회암맥(GG60), 그리고 상부 유문암질 응회암(GG91)이다. 그 외에 칼데라 내부 에 있는 1개의 화강암 시료(GG99)를 분석하였다(그 림 1).

선별된 시료들은 각각 유압파쇄기 등을 활용하여 1~2 kg 정도를 분말화하였으며 이 분말로부터 표준 망체를 이용하여 120~180 메쉬의 입자를 회수하였 다. 이 입자들은 수세식 팬닝, 중액법, 자성분리법의 절차에 따른 중광물 선별법을 활용하여 저어콘을 분 리하였다. 선별된 저어콘은 표준 저어콘 시료와 함 께 시료별로 2.54 cm의 에폭시 마운트(epoxy mount) 에 고정되어 입자의 절반이 드러날 정도로 연마하였 다. 에폭시 마운트는 한국기초과학지원연구원 오창 본원에 보유중인 JEOL-6610LV 주사전자현미경을 활용하여 후방산란전자영상과 음극선발광영상을 촬영하였다.

저어콘의 U-Pb 연령측정은 한국기초과학지원연구 원에 보유중인 고분해능 이차이온질량분석기(SHRIMP) 를 활용하여 수행되었다. 분석에 이용된 1차 이온빔 의 크기와 전류는 각각 ~20 μm, ~3 nA이였다. 저어 콘의 U 농도 측정과 <sup>206</sup>Pb/<sup>238</sup>U 검정선 수립을 위해 서 각각 SL13 (238 ppm U; Claoué-Long *et al.*, 1995)과 미국 둘루스 복합체(Duluth Complex)로부 터 분리된 FC1 표준 저어콘(<sup>206</sup>Pb/<sup>238</sup>U=0.1859; Paces and Miller, 1993)을 사용하였다. 분석한 저어콘의 U-Pb 동위원소 성분/연령계산과 다이어그램 도시는 spuid2와 Isoplot/Ex 프로그램을 각각 이용하였다 (Ludwig, 2008). 전반적인 SHRIMP 분석법 및 보 통 Pb 보정은 Williams (1998)의 것을 따랐다.

# 6. 연령측정 결과

하부 유문암질 응회암 시료(GG17)에서 나온 저 어콘들은 대부분 단주상이며 음극선발광영상에서 심 한 진동누대를 보여준다(그림 3a). 19개 분석치에서 U과 Th 농도는 각각 239~1460 ppm과 127~860 ppm 이고, Th/U 비는 0.48~1.24 범위이다(표 1). 이러한 비는 Th/U=1 선 부근을 따라 직선상 분포를 나타낸 다(그림 4). 외형 및 내부구조와 더불어 높은 Th/U 비는 마그마에서 성장한 저어콘의 특징을 나타낸다 (Vavra *et al.*, 1999; Hartman *et al.*, 2000). 그러나 저어콘들은 결정 형성과 관련된 선행결정(antecryst), 자생결정(autocryst)과 외래결정(xenocryst) 등으로 혼합되어있을 수 있다(Miller *et al.*, 2007). 그러한 결정은 일일이 구별할 수 없기 때문에 문제 있는 외 래결정만 제외하고 통계적으로 처리할 수밖에 없다. 결과적으로 19개 분석점에서 <sup>206</sup>Pb/<sup>238</sup>U 겉보기 연 대는 60.4~75.9 Ma 범위로 측정되었으며(표 1), 콘 코디아(concordia) 그림에서 일치곡선 상에서 의미 있는 집중군을 보여준다(그림 5a). 이들을 통계적으 로 처리하면 17개 중 12개 분석치로부터 64.3±0.5 Ma (MSWD=1.6)의 가중평균 <sup>206</sup>Pb/<sup>238</sup>U 연령을 얻 을 수 있는데(그림 5a), 이는 이 응회암의 정치연령 으로 해석된다.

응회암맥 시료(GG60)의 저어콘들은 자형의 주상 이며, 음극선발광영상에서 심한 진동누대를 나타내 고 상속핵을 가지지 않는다(그림 3b). 15개 분석치 에서 U 농도는 277~721 ppm로 높고 Th 농도도 164~664 ppm로 높은 편이며, Th/U 비는 0.45~1.41 범위를 가진다(표 1). 이러한 비는 대체로 Th/U=1 선을 따라 거의 직선상 분포를 나타내는데(그림 4),



Fig. 3. Representative cathodoluminescence images of the analyzed zircon grains, showing the location of analytical spots and <sup>206</sup>Pb/<sup>238</sup>U ages in Ma.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 206 <sub>Pb</sub> | II         | Th    | <sup>232</sup> Th/ |                          | 207 <sub>Pb</sub> / |                        | 206 <sub>Pb</sub> / |                        | 206 <sub>Db</sub> / | 238 <sub>1 1**</sub>   | 207 <sub>Db</sub> | 206ph*                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|-------|--------------------|--------------------------|---------------------|------------------------|---------------------|------------------------|---------------------|------------------------|-------------------|------------------------|
| Spot no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (%)               | (ppm)      | (ppm) | 238 <sub>11</sub>  | ±%                       | 206 <sub>Pb</sub>   | ±%                     | 238 <sub>11</sub>   | $\pm\%$                | ΓU/<br>Age          | (Ma)                   | Age               | (Ma)                   |
| Sample GG17 (Lower thyolific toff) Vering U reing U re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |            |       |                    |                          |                     |                        |                     |                        | (1111)              |                        |                   |                        |
| GG17 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.13              | 251        | 301   | 1.2373             | ±0.4                     | 0.0483              | ±5.2                   | 0.0218              | ±1.5                   | 62.8                | ±1.0                   | -290              | ±701                   |
| GG17_3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.34              | 530        | 326   | 0.6361             | $\pm 0.4$                | 0.0500              | ±2.5                   | 0.0226              | ±2.4                   | 62.4                | ±0.5                   | 193               | ±69                    |
| GG17_4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.17              | 724        | 420   | 0.5987             | $\pm 0.4$                | 0.0486              | $\pm 2.0$              | 0.0201              | $\pm 2.8$              | 65.4                | $\pm 0.5$              | 94.4              | $\pm 56$               |
| GG17_5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.22              | 534        | 333   | 0.6441             | $\pm 0.4$                | 0.0491              | $\pm 2.1$              | 0.0210              | $\pm 1.5$              | 64.5                | $\pm 0.5$              | 134               | $\pm 80$               |
| GG17_6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12              | 248        | 140   | 0.5815             | $\pm 0.4$                | 0.0483              | $\pm 3.2$              | 0.0207              | $\pm 1.0$              | 64.0                | $\pm 1.2$              | -129              | $\pm 105$              |
| GG17_7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.49              | 360        | 220   | 0.6315             | $\pm 0.4$                | 0.0511              | ±2.7                   | 0.0185              | ±4.5                   | 62.3                | $\pm 0.5$              | -193              | $\pm 147$              |
| GG17_8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.21              | 714        | 467   | 0.6756             | $\pm 0.4$                | 0.0489              | ±6.3                   | 0.0193              | $\pm 7.8$              | 60.4                | ±3.5                   | 57.9              | ±172                   |
| GG17_9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.02             | 909        | 645   | 0.7326             | ±0.3                     | 0.0471              | $\pm 1.8$              | 0.0210              | ±0.6                   | 65.9                | ±0.5                   | -18               | ±65                    |
| GG17_10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.29              | 1240       | 821   | 0.6840             | $\pm 0.3$                | 0.0496              | ±1.4                   | 0.0205              | ±1.5                   | 65.2                | $\pm 0.8$              | 214               | ±46                    |
| GG17_11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.12             | 605        | 376   | 0.6408             | $\pm 0.3$                | 0.0464              | ±2.0                   | 0.0199              | ±2.6                   | 64.4                | ±1.0                   | -17               | ±67                    |
| GG17_13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.10              | 025        | 3/9   | 0.09/9             | $\pm 0.3$                | 0.0481              | ±2.2                   | 0.0220              | $\pm 0.7$              | 64.9                | ±0.5                   | 8.0               | ±119                   |
| GG17_15_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03              | 230        | 1/3   | 0.9397             | $\pm 0.3$<br>$\pm 0.4$   | 0.0473              | ±1.7<br>±3.3           | 0.0200              | ±3.7                   | 63.5                | $\pm 0.3$<br>$\pm 0.7$ | 1/13              | ±00                    |
| GG17_16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.27             | 466        | 303   | 0.6717             | $\pm 0.4$<br>$\pm 0.4$   | 0.0452              | +2.6                   | 0.0194              | $\pm 1.0$<br>$\pm 2.8$ | 63.5                | +0.5                   | -298              | +90                    |
| GG17_17_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.54              | 1460       | 738   | 0.5222             | +0.4                     | 0.0452              | +7.2                   | 0.0097              | +4.6                   | 75.9                | +0.9                   | -290              | +240                   |
| GG17_18.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.14              | 501        | 333   | 0.6874             | ±0.4                     | 0.0484              | ±2.3                   | 0.0230              | ±0.7                   | 64.1                | ±0.9                   | 240               | ±67                    |
| GG17 19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.27              | 276        | 127   | 0.4766             | ±0.4                     | 0.0494              | ±3.2                   | 0.0205              | ±1.0                   | 63.2                | ±0.5                   | 35.5              | ±83                    |
| Sample GG60 (7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fuff dike)        |            |       |                    |                          |                     |                        |                     |                        |                     |                        |                   |                        |
| GG60 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.09              | 312        | 188   | 0.6204             | ±0.4                     | 0.0481              | ±2.8                   | 0.0204              | ±1.8                   | 65.0                | ±0.5                   | 134               | ±76                    |
| GG60_3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.27              | 277        | 164   | 0.6120             | $\pm 0.4$                | 0.0494              | ±3.2                   | 0.0191              | ±2.7                   | 61.8                | $\pm 0.5$              | -86               | $\pm 101$              |
| GG60_4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.49              | 345        | 323   | 0.9657             | $\pm 0.4$                | 0.0512              | ±2.7                   | 0.0194              | $\pm 1.0$              | 65.4                | $\pm 0.5$              | 375               | ±129                   |
| GG60_5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.07             | 487        | 664   | 1.4095             | ±0.3                     | 0.0467              | $\pm 2.5$              | 0.0209              | $\pm 0.8$              | 62.0                | $\pm 2.6$              | -228              | $\pm 456$              |
| GG60_6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.43              | 396        | 324   | 0.8439             | $\pm 0.4$                | 0.0507              | ±4.7                   | 0.0201              | $\pm 1.9$              | 64.0                | $\pm 0.5$              | 4.3               | $\pm 157$              |
| GG60_7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.52              | 310        | 181   | 0.6054             | $\pm 0.4$                | 0.0514              | ±2.7                   | 0.0212              | ±0.9                   | 64.6                | $\pm 0.7$              | -64               | $\pm 90$               |
| GG60_8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.12              | 407        | 274   | 0.6956             | $\pm 0.4$                | 0.0482              | ±2.5                   | 0.0202              | $\pm 1.9$              | 62.8                | $\pm 1.1$              | 82.9              | $\pm 85$               |
| GG60_9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.09             | 285        | 314   | 1.1405             | ±0.4                     | 0.0466              | ±3.1                   | 0.0198              | ±0.9                   | 63.5                | ±0.8                   | -243              | ±327                   |
| GG60_10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09              | 345        | 321   | 0.9597             | $\pm 0.4$                | 0.0480              | ±2.7                   | 0.0196              | ±0.9                   | 64.3                | ±0.5                   | -122              | ±178                   |
| GG60_11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.01             | 422        | 253   | 0.6200             | ±0.4                     | 0.0472              | ±2.3                   | 0.0206              | ±0.7                   | 65.0                | ±0.5                   | 106               | ±64                    |
| GG60_12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.05             | 220<br>721 | 293   | 0.5512             | $\pm 0.4$                | 0.0469              | ±2.1                   | 0.0207              | ±1.5                   | 64.5                | ±0.5                   | 48.0              | ±57                    |
| GG60_14_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03              | 371        | 283   | 0.3808             | $\pm 0.3$<br>$\pm 0.4$   | 0.0477              | ±1.9<br>±2.6           | 0.0200              | ±1.0<br>±0.8           | 66.0                | ±0.5                   | 07.5              | ±30<br>±95             |
| GG60_14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.13              | 513        | 285   | 0.4471             | $\pm 0.4$<br>$\pm 0.4$   | 0.0483              | +2.0                   | 0.0210              | $\pm 0.3$<br>+1.4      | 64.2                | $\pm 0.5$              | -37               | +59                    |
| Sample GG91 (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inner rhvoli      | tic tuff)  |       | 0.4471             | ±0.4                     | 0.0405              | -2.2                   | 0.0200              | ±1.7                   | 04.2                | ±0.5                   | -37               | ±57                    |
| GG91 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.01             | 222        | 158   | 0.7357             | 0.4                      | 0.0472              | 3.4                    | 0.0216              | 2.2                    | 64.0                | 0.5                    | -39               | ±123                   |
| GG91 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.31              | 218        | 143   | 0.6778             | 0.4                      | 0.0497              | 3.5                    | 0.0196              | 1.2                    | 62.1                | 1.1                    | -54               | ±123                   |
| GG91 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.11             | 307        | 202   | 0.6786             | 0.6                      | 0.0464              | 3.1                    | 0.0192              | 1.8                    | 64.4                | 0.8                    | 118               | ±95                    |
| GG91 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.19              | 820        | 1435  | 1.8069             | 0.3                      | 0.0488              | 1.8                    | 0.0198              | 2.3                    | 63.7                | 0.5                    | 501               | ±431                   |
| GG91_5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.03              | 336        | 362   | 1.1121             | 0.4                      | 0.0475              | 2.9                    | 0.0198              | 2.6                    | 63.8                | 0.5                    | 292               | $\pm 201$              |
| GG91_6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.03             | 370        | 274   | 0.7667             | 0.4                      | 0.0471              | 2.7                    | 0.0204              | 1.8                    | 66.7                | 0.8                    | -193              | $\pm 117$              |
| GG91_7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.20              | 419        | 359   | 0.8853             | 0.4                      | 0.0489              | 2.5                    | 0.0198              | 1.5                    | 63.8                | 0.5                    | 281               | $\pm 103$              |
| GG91_8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.21              | 339        | 311   | 0.9492             | 0.4                      | 0.0489              | 2.7                    | 0.0201              | 1.6                    | 63.5                | 0.5                    | 91.1              | $\pm 150$              |
| GG91_9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.14              | 198        | 187   | 0.9798             | 0.4                      | 0.0484              | 6.0                    | 0.0213              | 1.2                    | 61.1                | 3.2                    | 317               | ±219                   |
| GG91_10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.60              | 513        | 587   | 1.1806             | 0.4                      | 0.0520              | 2.1                    | 0.0220              | 0.7                    | 64.0                | 0.5                    | 343               | ±173                   |
| GG91_11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.10             | /19        | 819   | 1.1//5             | 0.4                      | 0.0465              | 2.2                    | 0.0205              | 0.6                    | 64.8                | 0.8                    | -208              | ±222                   |
| GG91_12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08              | 220        | 1050  | 1.5141             | 0.5                      | 0.0479              | 1.9                    | 0.0202              | 1.0                    | 62 1                | 1.0                    | -48               | ±395                   |
| GG91_13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20              | 229        | 240   | 1.0042             | 0.4                      | 0.0494              | 3.5                    | 0.0193              | 1.1                    | 65.5                | 0.5                    | 156               | $\pm 121$<br>$\pm 240$ |
| $\underbrace{\text{GO9}_{17,1}, \text{GO9}_{17,1}, $ |                   |            |       |                    |                          |                     |                        |                     |                        |                     |                        |                   |                        |
| GG99 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.91              | 134        | 146   | 1.13               | ±1.00                    | 0.0545              | ±5.4                   | 0.0303              | ±1.2                   | 61.7                | ±1.0                   | 61.9              | ±0.7                   |
| GG99 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                 | 92         | 108   | 1.21               | $\pm 0.80$               | 0.0469              | ±4.2                   | 0.0296              | ±4.0                   | 61.7                | ±1.0                   | 62.5              | ±0.7                   |
| GG99 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.65              | 287        | 486   | 1.75               | ±1.62                    | 0.0524              | ±2.2                   | 0.0314              | ±3.5                   | 63.8                | $\pm 0.7$              | 63.3              | ±0.6                   |
| GG99 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                 | 85         | 55    | 0.68               | ±0.43                    | 0.0495              | $\pm 2.0$              | 0.1304              | ±2.6                   | 283                 | $\pm 3$                | 283               | ±3                     |
| GG99_5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                 | 139        | 185   | 1.38               | ±0.27                    | 0.0468              | $\pm 5.9$              | 0.0296              | $\pm 3.5$              | 64.4                | $\pm 1.0$              | 64.1              | ±0.7                   |
| GG99_6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.42              | 84         | 81    | 1.00               | $\pm 0.38$               | 0.0506              | $\pm 4.2$              | 0.0284              | $\pm 2.6$              | 62.5                | $\pm 1.0$              | 63.1              | $\pm 0.8$              |
| GG99_7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.57              | 92         | 59    | 0.66               | $\pm 0.42$               | 0.0519              | $\pm 4.0$              | 0.0301              | $\pm 1.3$              | 66.2                | $\pm 1.0$              | 65.4              | $\pm 0.8$              |
| GG99_8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.14              | 108        | 126   | 1.21               | $\pm 0.81$               | 0.0484              | $\pm 3.8$              | 0.0290              | ±4.7                   | 64.8                | $\pm 1.0$              | 63.8              | $\pm 1.0$              |
| GG99_9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                 | 193        | 252   | 1.34               | ±0.22                    | 0.0468              | ±2.8                   | 0.0316              | ±2.8                   | 64.7                | $\pm 1.0$              | 64.5              | $\pm 0.8$              |
| GG99_10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12              | 108        | 120   | 1.15               | ±0.90                    | 0.0483              | ±3.8                   | 0.0301              | ±3.5                   | 65.4                | ±2.0                   | 63.9              | ±2.0                   |
| GG99_11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                 | 177        | 253   | 1.47               | $\pm 0.41$               | 0.0457              | $\pm 3.0$              | 0.0298              | ±3.2                   | 63.0                | ±0.8                   | 62.7              | ±0.6                   |
| GG99_12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12              | 241        | 189   | 0.81               | $\pm 0.23$               | 0.0483              | ±2.4                   | 0.0315              | $\pm 3.0$              | 63.4                | ±0.7                   | 63.2              | ±0.6                   |
| GG99_13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                 | 244        | 2//   | 1.18               | $\pm 0.38$               | 0.0457              | ±2.4                   | 0.0339              | ±3.4                   | 64.2                | $\pm 1.0$<br>$\pm 0.0$ | 63.6              | $\pm 1.0$<br>$\pm 0.7$ |
| GG00 15 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03              | 105        | 115   | 1.13               | ±0.83                    | 0.0323              | ±3.0<br>±2.2           | 0.0280              | ±3.3<br>±2.0           | 64.2                | ±0.9                   | 02.1<br>64.5      | ±0.7                   |
| GG99_16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.15              | 333        | 269   | 0.33               | $\pm 0.20$<br>$\pm 0.20$ | 0.0470              | $\pm 3.2$<br>$\pm 2.0$ | 0.0304              | +2.2                   | 65.4                | +0.9                   | 65.0              | +0.7                   |
| GG99 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.09              | 498        | 504   | 1.04               | $\pm 0.15$               | 0.0481              | ±1.7                   | 0.0301              | ±3.2                   | 64.5                | ±0.7                   | 64.5              | ±0.7                   |

Table 1. Summary of SHRIMP U-Pb isotope data of the analyzed zircons from igneous rocks in the Hwasan caldera.



**Fig. 4.** Correlation diagram showing the proportions of Th to U concentrations (ppm) of the analyzed zircons in the study.

이는 형태 및 내부구조와 함께 일반적인 화성기원을 반영한다. 15개 분석치는 61.8~66.0 Ma 매우 좁은 범위의 겉보기 연령을 가지며(표 1), 14개 분석치는 일치곡선 상에서 의미있는 연령을 나타낸다. 14개 중에 젋은 연령치를 제외한 12개 분석치를 통계적 으로 처리하면 가중평균 <sup>206</sup>Pb/<sup>238</sup>U 연령 64.7±0.5 Ma (MSWD=1.8)를 갖는데(그림 5b), 이는 응회암 맥의 관입연령으로 해석된다.

상부 유문암질 응회암 시료(GG91)의 저어콘들은 모두 주상을 나타내며, 음극선발광영상에서 진동누 대를 보여준다(그림 3). 14개 분석치에서의 U과 Th 농도는 각각 198~820 ppm과 143~1435 ppm이고, Th/U 비는 0.68~1.81 범위를 가진다(표 1). 이 비는 Th/U=1 선을 따라 거의 직선상 분포를 나타내는데 (그림 4), 이는 외형 및 내부구조와 더불어 일반적인 화성기원을 나타낸다. 14개의 SHRIMP 분석치는



Fig. 5. Concordia diagrams for SHRIMP U-Pb ages of zircons separated from samples in the Hwasan caldera.

61.1~65.5 Ma로 겉보기 연령을 가진다(표 1). 일치 곡선 상에서 젋은 것과 오래된 것을 제외한 가중평 균<sup>206</sup>Pb/<sup>238</sup>U 연령은 63.9±0.5 Ma (MSWD=1.5)로 계산되며(그림 5c), 이는 이 응회암의 정치연령으로 해석된다.

화강암맥에서 나온 시료(GG99)의 저어콘들은 대 부분 반자형의 입자를 나타낸다. 분석치에서 U 및 Th 함량은 각각 84~333 ppm과 55~486 ppm의 비 교적 낮은 범위이고 Th/U 비는 0.66~1.75 범위이다 (표 1). 이 비는 대부분 Th/U=1 선의 윗부분을 따라 거의 직선상 분포를 나타내며(그림 4), 이는 일반적 인 화성기원을 지시한다. 16개 분석점에서 겉보기 <sup>206</sup>Pb/<sup>238</sup>U 연령은 61.7~283 Ma의 범위로 측정되었 다(표 1). 집중군을 이루는 그림에서 가장 오래된 분 석치 1개를 빼고 15개의 가중평균 <sup>206</sup>Pb/<sup>238</sup>U 연령 은 63.6±0.6 Ma (MSWD=1.9)이다(그림 5d). 따라 서 이 연령은 화강암의 관입연대로 해석된다.

## 7. 토 의

#### 7.1 어봉산암주의 정치시기

경상누층군을 관입한 심성암류는 전통적으로 불 국사관입암군으로 묶어서 유천층군의 퇴적 이후에 관입한 것으로 여겨져 왔다. 이에 따라 어봉산암주 도 불국사관입암군으로 보고 고로화산암복합체를 관 입한 것으로 추정하였다(Chang *et al.*, 1977; Hwang and Kim, 1999). 그러나 어봉산암주 흑운모 화강암 에서 분리한 저어콘들로부터 측정한 SHRIMP 저어 콘 U-Pb 연령은 76.9±0.9 Ma로 보고되었으며(Hwang *et al.*, 2017), 부근의 부남암주에서도 77.2~75.8 Ma 의 정치연령이 보고되었다(Hwang and Kim, 2006). 따라서 어봉산암주는 64~63 Ma의 저어콘 연령이 산출된 고로화산암복합체의 형성과 이후 관입한 화 강암맥과는 직접적인 관계가 없는 것으로 판단된다.

# 7.2 고로화산암복합체의 1차 분출 및 칼데라 형 성 시기

고로화산암복합체는 하부 유문암질 응회암, 응회 암맥, 상부 유문암질 응회암에서 SHRIMP 저어콘 U-Pb 연령을 얻었다. 이를 통해 하부 유문암질 응회 암의 분출시기가 고원기 팔레오세 다니아절에 해당 하는 64.3±0.5 Ma임을 확인할 수 있다. 외측 칼데라

의 환상단열대를 따라 관입한 환상 응회암맥은 64.7±0.5 Ma의 SHRIMP 저어콘 U-Pb 연령을 산출 하였다. 야외조사 결과 이 응회암맥은 하부 유문암 질 응회암이 분출한 이후 발생한 함몰에 의한 단열 대를 따라 관입한 것으로 보고 있다(Yun, 1988). 저 어콘 연대측정 결과는 하부 유문암질 응회암층과 환 상응회암의 측정결과가 대략 64.5 Ma로 오차범위 에서 일치하기 때문에 하부 유문암질 응회암의 분 출, 지반의 침강과 단열작용, 그리고 환상 유문암의 분출이 오차범위 내의 짧은 시간 안에 발생했음을 지시한다. 대규모 화산 쇄설물 분출은 칼데라 함몰 이 바로 수반되고(Druitt and Sparks, 1985; Druitt and Bacon, 1986; Hildreth and Mahood, 1986), 함 몰에 의한 하중압력은 추가적인 분출을 유발하는 것 (Gudmundsson et al., 1999)으로 알려져 있으므로 연령측정 결과를 바탕으로 본 연구의 해석에는 큰 문제가 없다. 64.5 Ma의 대규모 화산분출과 이후 수 반된 칼데라 형성 및 환상암맥의 형성을 1차 분출로 정의하고자 한다.

# 7.3 고로화산암복합체의 2차 분출 및 칼데라 형 성 시기

상부 유문암질 응회암의 대규모 분출시기는 63.9±0.5 Ma이다. 칼데라의 내측에서 환상 암맥을 이루고 있 는 또 다른 암체(그림 1)인 화강암맥은 63.6±0.6 Ma 의 관입연령을 산출하였다. 상부 유문암질 응회암과 화강암맥의 저어콘 연령(63.9~63.6 Ma)은 1차 분출 과 관련된 하부 유문암질 응회암과 환상의 응회암맥 이 분출한 시기(64.5 Ma)와 오차범위에서 중첩되지 만, 야외조사를 통한 관입 양상을 고려할 때 대략 0.3 Ma 정도 이후에 관입 또는 분출했을 것으로 추 정된다. 따라서 상부 유문암질 응회암과 화강암맥의 형성은 1차 분출 및 칼데라 형성과는 관계가 없기 때문에 이 암체들의 형성은 2차 분출 및 칼데라 형 성시기로 보았다. 연령측정 결과는 대략 63.9 Ma에 2차적인 대규모 분출에 의해 상부 유문암질 응회암 이 퇴적되었고, 이후 ~63.5 Ma에 분화구 주변의 함 몰과 이에 따른 환상단열대를 따라 화강암맥이 관입 했음을 지시한다. 이 두 암체의 연령측정 결과도 거 의 일치하기 때문에 대규모 분출 즉시 칼데라가 형 성되고 하중압력에 따른 유문암맥의 추가 분출과 더 불어 발생했음을 지시한다(Druitt and Bacon, 1986;

Hildreth and Mahood, 1986; Gudmundsson et al., 1999).

#### 7.4 칼데라 형성과정

화산층서는 SHRIMP U-Pb 연령과 함께 화산 칼 데라 지역에서 화성과정을 다음과 같이 엮어볼 수 있다.

어봉산 지역에서는 하양층군 퇴적작용이 일어난 후 화산분출의 흔적 없이 76.92 Ma에 화강암질 마 그마가 관입하여 어봉산암주를 형성하였다. 그리고 별다른 화성활동 없이 장시간(약 10 Ma 이상)에 걸 쳐 큰 침식이 일어나고 어봉산암주가 지표에 노출되 었다. 이후 선암산 지역에서 유문데사이트질 화산작 용이 일어나 선암산응회암을 퇴적시키고 소규모 선 암산 칼데라를 형성하였다.

고로 북동 지역에서 안산암질 화산작용이 일어나 하부 응회암과 용암층을 집적시켰다. 그리고 1차 유 문암질 화산작용이 64.32 Ma에 대규모로 발생했다. 이로 인해 하부 유문암질 응회암을 집적시켰다. 이 1차 분출은 초기에는 강하회 분출상으로 시작하여 본격적으로 회류 분출상으로 전환되었다. 회류 분출 작용은 연속적으로 일어났으며 이때 형성기구는 분 연주의 붕괴에 의해 일어났다.

이때 마그마로부터 발생한 화성쇄설물이 큰 부피 로 일시에 제거됨으로써 마그마챔버의 지붕이 함몰 되어 화산 칼데라를 형성시켰다. 이때 화성쇄설물은 중앙화구를 따라 분출되었겠으나 칼데라 함몰과 거 의 동시에 환상열극화구(ring fissure vent)를 따라 분출하였다. 그 증거는 64.74 Ma에 정치한 응회암 맥이 환상단열대를 따라 관입되어있기 때문이다. 이 러한 두 단계의 칼데라 형성 회류분출상은 Druitt and Sparks (1985)에 의해 제안되었다.

1차 유문암질 화산작용이 끝나고 동쪽 근처에서 안산암질 용암이 칼데라 일부를 덮었다. 그리고 2차 유문암질 화산작용이 63.93 Ma 경에 비교적 큰 규 모로 일어났다. 이때도 처음에 강하회 분출상으로 시작하였으나 대규모 회류 분출상으로 바뀌었다. 칼 데라 중앙부의 중앙화구로부터 강하회가 소량 분출 되고 연이어 회류 분출작용이 대규모로 일어났다. 이때 상부 회류응회암은 변화없이 거의 일정한 암상 을 나타내고 환상단열대를 따른 응회암맥이 없으며 중앙부에 중앙화구를 지시하는 각력암 플러그가 존 재한다. 이러한 증거들은 하나의 중앙화구로부터 연 속적인 분출이 있었다는 것을 의미한다.

점차 마그마 방출량이 커짐에 따라 마그마챔버의 상위에 환상단열대가 생기고 부분적으로 함몰되었 다. 마그마챔버는 마그마의 분출로 인해 점진적 압 력 감소로 인해 챔버 내의 부족압력이 상위 하<del>중을</del> 초과할 때 환상단열대와 함께 지붕 함몰이 일어난 다. 지붕 함몰은 챔버의 상단에서의 암압을 복구시 키게 된다.

화쇄류 분출과 관련해서 내측 칼데라가 함몰되었 다는 것은 환상단열대에 유문암맥과 화강암맥의 관 입이 이를 지지해준다. 따라서 이들 암맥의 출현은 중앙화구로부터의 회류 분출이 일어난 후에 칼데라 함몰에 의한 환상단열이 발달된 것으로 판단된다. 왜냐하면 유문암맥이 상부 유문암질 응회암과 각력 암플러그를 관입하고 화강암맥이 63.55 Ma에 환상 단열대를 따라 관입되어있기 때문이다.

이러한 분출은 분출량이 급격히 늘어남으로서 폭 발력이 소진되고 칼데라 함몰은 계속되어 내측 환상 단열대를 이용한 조용한 마그마 주입으로 전환되었 다. 유문암맥과 화강암맥의 환상관입체의 형태와 위 치에 의하면 이들의 정치는 칼데라의 연변부에서 구 조적인 환상단열대에 의해 지배되었음을 암시한다.

# 8. 결 론

군위군 동부에 존재하는 화산 칼데라 주변의 화 성암류는 어봉산암주, 선암산응회암, 고로화산암복 합체, 기타 심성암 순으로 구분된다. 화성암류에 대 한 SHRIMP 저어콘 U-Pb 연령측정을 실시함으로 써 화성암류의 분출 혹은 관입시기와 층서관계를 명 확히 하였다. 측정결과에 의하면 고로화산암복합체 에서 하부 유문암질 응회암은 64.3±0.5 Ma, 응회암 맥은 64.7±0.5 Ma, 상부 유문암질 응회암은 63.9± 0.5 Ma에 분출 혹은 관입 연대를 가지며, 화강암맥 은 63.6±0.6 Ma 관입 연령을 나타낸다. 따라서 이 모두는 고원기 팔레오세 다니아절에 형성되었다.

고로화산암복합체 일대의 야외조사 결과와 이 복 합체를 구성하고 있는 일부 화성암에 대한 저어콘 연령측정 결과를 바탕으로 다음과 같은 결론을 내릴 수 있었다. 이 지역은 환상 단열대(또는 환상단층)이 형성되어 이를 따라 환상암맥이 관입하게 된 칼데라 함몰을 유발시킨 최소 2회의 대규모 화산분출작용 이 인지된다. 각각의 시기는 1차 분출이 대략 64.3± 0.5 Ma 부근이며 2차 분출이 63 Ma로 판단된다. 1 차 화산분출은 하부 유문암질 응회암의 대규모 회류 분출(64.3 Ma)을 의미하며, 이로 인하여 발생한 함 몰과 외측 환상단열대를 통해 응회암맥(64.7±0.5 Ma)이 관입했다. 2차 화산분출은 상부 유문암질 응 회암(63.9±0.5 Ma)과 각력암 플러그의 형성을 유발 했으며, 이로 인해서 발생한 침강과 내측 환상단열 대를 통해서 유문암맥과 더불어 화강암맥(63.6±0.6 Ma)이 관입하였다.

화산 칼데라에서 내측 환상단열대는 선기 칼데라 내에 동심원상으로 형성된 후기의 작은 칼데라를 의 미한다. 그러므로 화산 칼데라는 두 차례의 회류응 회암-칼데라 함몰-환상암맥으로 이어지는 복잡한 화 산과정을 나타내는 둥지상 칼데라를 나타낸다.

## 감사의 글

이 연구는 2020년 과학기술정보통신부의 재원으 로 한국기초과학연구원 선도장비 이용자 활성화 사 업(C030440)의 지원을 받아 수행되었다. 지질도는 2003년 군위댐 타당성 조사 시에 작성된 것을 바탕 으로 하였고 연대측정은 한국기초과학지원연구원 의 SHRIMP U-Pb 분석으로 수행되었다. 심사과정 을 통해 건설적 아이디어를 제공하고 세심하게 문장 을 다듬어준 편집위원과 두 심사위원에게 사의를 표 한다. 그림은 암석학 실험실 이소진과 현혜원의 도 움으로 제작되었다.

#### REFERENCES

- Anderson, E.M., 1936, Dynamics of formation of conesheets, ring-dikes, and cauldron subsidences. Royal Society of Edinburgh Proceedings, 56, 128-157.
- Billings, M.P., 1945, Mechanisms of igneous intrusion in New Hampshire. American Journal of Sciences, 243, 41-68.
- Billings, M.P., 1972, Structural geology, Prentice-Hall, Inc., 3rd ed., 314-360.
- Bonin, B., 1986, Ring complex granites and anorogenic magmatism. Studies in geology: New York, Elsevier, 188 p.
- Bussell, M.A., Pitcher, W.S. and Wilson, P.A., 1976, Ring

complexes of the Peruvian Coastal Batholith: a longstanding subvolcanic regime. Canadian Journal of Earth Sciences, 13, 1020-1030.

- Cha, M.S. and Yun, S.H., 1988, Cretaceous volcanic cauldrons and ring complexes in Korea. Journal of the Geological Society of Korea, 24, 67-86 (in Korean with English abstract).
- Chang, K.H., 1978, Late Mesozoic Stratigraphy, Sedimentation and Tectonics of Southeastern Korea (II) - with discussion on petroleum possibility. Journal of the Geological Society of Korea, 14, 120-135 (in Korean with English abstract).
- Chang, K.H., Ko, I.S., Lee, J.Y. and Kim, S.W., 1977, Explanetary text of the geological map of Gusandong Sheet (1:50,000). Korea Research Institute of Geoscience and Mineral Resources, 25 p.
- Claoué-Long, J.C., Compston, W., Roberts, J. and Fanning, C.M., 1995, Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and <sup>40</sup>Ar/<sup>39</sup>Ar analysis. SEPM Society for Sedimentary Geology, 54, https://doi.org/10.2110/pec.95.04.0003.
- Clough, C.T., Maufe, H.B. and Bailey, E.B., 1909, The cauldron-subsidence of Glen Coe and the associated igneous phenomena. Geological Society of London Quarterly Journal, 65, 611-678.
- Cole, J.W., Milner, D.M. and Spinks, K.D., 2005, Calderas and caldera structures. Earth-Science Reviews, 69, 1-26.
- Dodge, F.C.W., 1979, The Uyaijah ring structure, Kingdom of Saudi Arabia. US Geolological Survey Professional Paper, 774-E, 17 p.
- Druitt, T.H. and Bacon, C.R., 1986, Lithic breccia and ignimbrite erupted during the collapse of Crater Lake caldera, Oregon. Journal of Volcanology and Geothermal Research, 29, 1-32.
- Druitt, T.H. and Sparks, R.S.J., 1985, On the formation of calderas during ignimbrite eruptions. Nature, 310, 679-681.
- Gudmundsson, A., Marinoni, L.B. and Marti, J., 1999, Injection and arrest of dykes: implications for volcanic hazards. Journal of Volcanology and Geothermal Research, 88, 1-13.
- Hartman, L.A., Leite, J.A.D., Silva, L.C., Remus, M.V.D., McNaughton, N.J., Groves, D.I., Fletcher, I.R., Santos, J.O.S. and Vasconcellos, M.A.Z., 2000, Advances in SHRIMP geochronology and their impact on understanding the tectonic and metallogenic evolution of southern Brazil. Australian Journal of Earth Sciences, 47, 829-844.
- Hildreth, W. and Mahood, G.A., 1986, Ring-fracture eruption of the Bishop Tuff. Geological Society of America Bulletin, 97, 396-403.
- Hwang, S.K., 2002, Collapse type and evolution of the Guamsan caldera, southeastern Cheongsong, Korea.

Journal of the Geological Society of Korea, 38, 199-216 (in Korean with English abstract).

- Hwang, S.K., Jo, I.H. and Yi, K., 2017, SHRIMP U-Pb datings and igneous processes of the igneous rocks around the Myeonbongsan caldera, Cheongsong, Korea. Journal of the Geological Society of Korea, 53, 781-796 (in Korean with English abstract).
- Hwang, S.K and Kim, S.H., 2006, Magmatic processes of the Muposan Tuff, southern and eastern Cheongsong, Korea. Journal of the Geological Society of Korea, 42, 253-271 (in Korean with English abstract).
- Hwang, S.K. and Kim, S.-K., 1999, Type and Evolution in the Myeonbongsan Caldera, Southern Cheongsong. Journal of the Petrological Society of Korea, 8, 171-182 (in Korean with English abstract).
- Komuro, H., 1987, Experiments on cauldron formation: a polygonal cauldron and ring fractures. Journal of Volcanology and Geothermal Research, 31, 139-149.
- Lipman, P.W., 1984, The roots of ash-flow calderas in western North America: Windows into the tops of granitic batholiths. Journal of Geophysical Research, 89, 8801-8841.
- Lipman, P.W., 2000, Calderas. In: Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes. Academic Press, San Diego, CA, 1417 p.
- Ludwig, K.R., 2008, User's manual for Isoplot 3.6: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4, Berkeley, California. 77 p.
- Miller, J.S., Matzel, J.E.P., Miller, C.F., Burgess, S.D. and Miller, R.B., 2007, Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167, 282-299.
- Myers, J.S., 1975, Cauldron subsidence and fluidization: mechanisms of intrusion of the coastal batholith of Peru into its own volcanic ejecta. Geological Society of America Bulletin, 86, 1209-1220.
- Oftedahl, C., 1978, Cauldrons of the Permian Oslo rift. Journal of Volcanology and Geothermal Research, 3, 343-371.
- Paces, J.B. and Miller Jr., J.D., 1993, Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to phys-

ical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research: Solid Earth, 98, 13997-14013.

- Shannon, J.R., 1988, Geology of the Mount Aetna cauldron complex, Sawatch Range, Colorado. Unpublished PhD thesis, Colorado School of Mine, Colorado, 435 p.
- Smith, R.L. and Bailey, R.A., 1968, Resurgent cauldrons. Geological Society of America Memoir, 116, 613-662.
- Turner, D.C., 1963, Ring-structures in the Sara-Fier Younger Granite complex, northern Nigeria. Quarterly Journal of the Geological Society, 119, 345-366.
- Vavra, G., Schmid, R. and Gebauer, D., 1999, Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 134, 380-404.
- Walker, G.P.L., 1975, A new concept of the evolution of the British Tertiary intrusive centres. Journal of the Geological Society, 131, 121-141.
- Williams, H., 1941, Calderas and their origin. University of California Publications, Bulletin of the Department of Geological Sciences, 25, 239-346.
- Williams, H. and McBirney, A.R., 1979, Volcanology: Freeman, Cooper & Co., 207 p.
- Williams, I.S., 1998, U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks, W.C.P. and Ridley, W.I. (eds.), Applications of microanalytical techniques to understanding mineralizing processes, Reviews in Economic Geology, 7, 1-35.
- Won, C.K., So, C.S. and Yun, S., 1980, Explanatory Text of the Geological Map of Sinryeong Sheet (1:50,000). Korea Research Institute of Geoscience and Mineral Resources, 21 p.
- Yun, S.H., 1988, Development and the structure of its cauldron of the Hwasan ring igneous complex, northern Kyeongsang basin, Korea. Journal of the Geological Society of Korea, 24, 267-288 (in Korean with English abstract).

| Received | : | June   | 2,  | 2022 |
|----------|---|--------|-----|------|
| Revised  | : | July   | 16, | 2022 |
| Accepted | : | August | 18, | 2022 |