지질학회지 제 51권 제 2호, p. 171-190, (2015년 4월) J. Geol. Soc. Korea, v. 51, no. 2, p. 171-190, (April 2015) DOI http://dx.doi.org/10.14770/jgsk.2015.51.2.171 ISSN 0435-4036 (Print) ISSN 2288-7377 (Online)

열처리를 통한 자기미세구조의 변화: 경상분지 구산동응회암에서의 사례연구

김현정¹ · 조형성¹ · 정종옥³ · 손 문^{1,‡} · 손영관² ¹부산대학교 지질환경과학과 ²경상대학교 지질과학과

³경상대학교 공동실험실습관

요 약

대자율이방성(AMS)은 암석의 미세구조 분석에 매우 효과적인 방법으로, 여러 장점들로 인해 다양한 지질 학 분야에서 광범위하게 활용되고 있다. 하지만 특수한 경우, 암석의 실제 미세구조와 자기미세구조가 서로 다 른 역 또는 혼합미세구조가 보고되기도 한다. 이번 연구에서는 경상분지 구산동응회암을 대상으로 시료의 열처 리를 통해 자기미세구조의 변화를 분석하고, 이로부터 자기미세구조의 향상과 역미세구조 문제의 해결에 관해 논의하였다. 단계별 열처리에 따른 자기미세구조 변화는 주축들의 방향 변화에 근거하여, ① 모든 온도 구간에 서 세 주축 방향의 변화가 없는 Type-0, ② k1이 열처리 전의 k2를 향해 그리고 k2는 열처리 전의 k1을 향하여 방 향이 바뀌며, k3의 방향 변화가 없는 Type-I, ③ k2와 k3의 방향이 서로 뒤바뀌는 반면, k1은 변화가 없는 Type-II, ④ 세 축의 방향이 모두 변화하여 서로의 위치가 뒤바뀌는 Type-III의 4가지 유형으로 분류된다. 또한, Type-III는 k1→k2, k2→k3, k3→k1으로 변화하는 Type-IIIA와 k1→k3, k3→k2, k2→k1으로 변화하는 Type-IIIB의 두 아유형으로 다시 분류된다. 이와 같은 변화과정을 통해 열처리 전 수평한 k3와 수직한 k1은 열처리 후 수직한 k3와 수평한 k1으로 각각 변화한다. 각 유형에서 나타나는 주축의 방향과 크기의 변화 양상은 역미세구조와 정 미세구조의 혼합에 근거한 이론적 모델과 잘 부합된다. 또한, 골격입자 배열 분석 결과는 암석의 실제 미세구조 가 열처리 전이 아닌 열처리 후의 자기미세구조와 일치함을 알려준다. 이와 같은 특징들은 열처리 전의 역 또는 혼합미세구조가 열처리 후에 정미세구조로 전환됨을 지시하는 것으로, 시료의 열처리를 통해 자기미세구조를 향상시키고 역미세구조의 문제를 해결할 수 있음을 보여주고 있다.

주요어: 대자율이방성, 자기미세구조, 역미세구조, 정미세구조, 자기미세구조의 열적 향상, 구산동응회암

Hyeonjeong Kim, Hyeongseong Cho, Jong Ok Jeong, Moon Son and Young Kwan Sohn, 2015, Magnetic fabric changes through thermal treatment: a case study on the Cretaceous Gusandong Tuff in the Gyeongsang Basin, Korea. Journal of the Geological Society of Korea. v. 51, no. 2, p. 171-190

ABSTRACT: Anisotropy of magnetic susceptibility (AMS) method is a very useful technique for determining rock fabrics that have been broadly used for interpreting a variety of geological processes. In particular cases, however, inverse/intermediate magnetic fabrics that cannot provide information of real rock fabrics have been reported. In this study, AMS measurements for the Cretaceous Gusandong Tuff, showing abnormal magnetic fabrics, have been performed through stepwise thermal treatment and observed thermal enhancement of the magnetic fabrics and inter-change between principal axes of AMS ellipsoid. Based on the directional changes of the principal axes, variations of the magnetic fabric during heating are classified into four types. ① Type-0 characterized with three fixed principal axes (k_1, k_2, k_3) on the whole heating steps. ② Type-I showing the exchange of k_1 and k_2 axes and fixed k_3 . ③ Type-II characterized with the exchange of k_2 and k_3 axes and fixed k_1 . ④ Type-III showing all the principal axes changed. The Type-III can be divided into two subtypes: Type-III_A $(k_1 \rightarrow k_2, k_2 \rightarrow k_1)$. Through these change processes, sub-horizontal k_3 and sub-vertical k_1 axes before heating are converted into sub-vertical k_3 and sub-horizontal k_1 axes after heating, respectively. The transitional aspects of magnitude and orientation of three principal axes during thermal treatment are plausibly concordant with those supposed by a theoretical model assuming progressive mixing of coaxial normal and inverse fabrics. In addition, real rock grain fabrics significantly correspond to the thermally treated magnetic fabrics. These

^{*} Corresponding author: +82-51-510-2248, E-mail: moonson@pusan.ac.kr

results thus indicate that the thermal treatment can be an effective method to solve the ambiguity raised by inverse and/or intermediate magnetic fabrics.

Key words: anisotropy of magnetic susceptibility, magnetic fabric, inverse magnetic fabric, normal magnetic fabric, thermal enhancement, Gusandong Tuff

(Hyeonjeong Kim, Hyeongseong Cho and Moon Son, Department of Geological Sciences, Pusan National University, Busan 609-735, Republic of Korea; Young Kwan Sohn, Department of Geological Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea; Jong Ok Jeong, Center for Research Facilities, Gyeongsang National University, Jinju 660-701, Republic of Korea)

1. 서 론

암석의 미세구조(rock fabric)는 암석을 구성하는 입자들의 공간적 그리고 기하학적 배열을 뜻하며, 암석 내 발달한 조직이나 구조 그리고 결정입자들의 배열 등 을 총칭하는 개념이다(Hobbs *et al.*, 1976; Passchier and Trouw, 2005). 수많은 지질학적 과정을 통해 만 들어지는 암석은 그에 상응하는 형태와 방향성의 미 세구조가 발달하게 된다. 그 예로 퇴적암의 경우, 약 한 흐름의 환경에서는 수평의 판상구조 또는 비늘구 조와 같은 입자배열이 만들어지는 반면, 강한 흐름 의 환경에서는 입자들이 구르면서 선상배열이 발달 한다. 또한, 지하 또는 지표에서 마그마나 용암 또는 화쇄류가 흐를 때도 흐름방향과 속도를 지시하는 다 양한 입자배열이 발달한다. 따라서 암석의 미세구조 는 다양한 지질학적 현상을 이해하기 위한 기초자료 로 활용되며, 결정적인 단서를 제공하기도 한다.

미세구조 분석방법으로는 현미경을 이용하는 전통 적인 방법과 물리적 성질(예, 탄성파 속도, 전기전도도, 대자율 등)을 이용하는 방법들이 사용되고 있다. 후자 중 하나인 대자율이방성(AMS: anisotropy of magnetic susceptibility) 연구는 자기미세구조(magnetic fabric) 연구라고도 하는데, 암석의 자기학적 성질 중 대 자율이 측정 방향에 따라 그 크기가 달라지는 점을 이용한다. 대자율이방성 연구는 저렴하고 조작이 간단 한 측정기기, 신속하고 정확한 측정, 정량적이고 통 계적인 분석 등의 장점을 가지고 있어, 암석의 미세 구조 판별에 효과적인 방법으로 인정받고 있다. 이러 한 장점들을 바탕으로 20세기 후반부터 이 방법은 전 세계적으로 암석의 미세구조 해석에 널리 활용되고 있으며, 심성암 마그마의 정치기구 해석, 퇴적암의 고수류 방향과 근원지(province) 파악, 용암과 화쇄 류의 흐름방향과 근원화도 해석, 지역적인 변형사와 고 응력장 해석, 단층과 전단대의 운동감각 규명 등의 광 범위한 지질학적 문제를 해결하기 위해 유용하게 사용 되고 있다(예, Borradaile, 1988; Tarling and Hrouda, 1993; Henry *et al.*, 2003; Martín-Hernández *et al.*, 2004; Cho *et al.*, 2007, 2014).

일반적으로 대자율이방성 분석을 통해 밝혀진 자 기미세구조는 암석의 실제 미세구조와 서로 대응되어 (정미세구조: normal magnetic fabric) 해석에 큰 어 려움이 없다. 그러나 특수한 경우에는 자기미세구조 의 장축과 단축이 암석에 실제 발달하는 미세구조의 방향과 서로 뒤바뀌어 나타나는 역미세구조(inverse magnetic fabric)의 문제가 발생함이 여러 연구자 에 의해 보고되고 있다(Potter and Stephenson, 1988; Rochette et al., 1992, 1999; Chadima et al., 2009). 역미세구조는 주로 단자기구역(single-domain) 자 철석이 함유된 암석에서 나타나는 것으로 알려져 있으 나(Potter and Stephenson, 1988; Rochette, 1988; Rochette et al., 1992), 그 원인과 발생 메커니즘은 현 재까지 명확히 밝혀지지 않고 있다. 이러한 역미세구 조 문제를 극복하기 위하여 AARM, AIRM과 같은 잔류자기 이방성(anisotropy of magnetic remanence) 이 활용되고 있으며(예, Jackson, 1991; Potter, 2004), 최 근에 와서는 시료의 열처리를 통해서 역미세구조의 문제점을 해결할 수 있음이 일부 학자들에 의해 보고 되고 있다(Trindade et al., 2001; Mintsa Mi Nguema et al., 2002). 이들에 따르면 가열에 의해 새롭게 생성 되는 자철석이 기존 암석의 구조에 규제되어 자라나 게 되어, 열처리 후의 자기미세구조가 암석의 실제 미세구조를 더욱 잘 반영하게 된다는 것이다. 그러나 역미세구조의 열처리에 관한 연구 또한 아직 초기단 계로서, 구체적인 메커니즘이 명확히 규명되지 않은 실정이다. 대자율이방성 연구의 지속적인 활용과 발 전을 위해서는 이러한 역미세구조와 열처리에 대한

문제는 반드시 해결되어야 하는 과제이다. 이번 연구는 경상분지 구산동응회암에서 선행된 대 자율이방성 연구결과(그림 1; Sohn *et al.*, 2005; Jeong, 2006)를 검토하여, 역미세구조로 추정되는 지점들(KT11, KT18)을 대상으로 단계적 열처리를 실시하고, 열처리

에 따른 자기미세구조의 방향 변화를 분석하였다. 더

불어 현미경 하에서 골격입자 배열을 분석하여 실제 암석의 미세구조를 열처리 전과 후의 자기미세구조와 비교하였다. 이들 결과를 바탕으로 열처리를 통해 역 미세구조가 실제 미세구조로 전환되는지의 여부 즉, 자기미세구조의 열적 향상(thermal enhancement of magnetic fabric)에 대해 논의하였다.

Fig. 1. (a) Distribution map of the Cretaceous basins in South Korea. (b) Simplified geological map of the Gyeongsang Basin with distribution of the Gusandong Tuff, outcrop localities, and sampling sites.

2. 구산동응회암

한반도에 분포하는 백악기 분지들 중 가장 큰 규 모인 경상분지는 암상과 층서적 차이에 근거하여 밀 양소분지, 의성소분지 그리고 영양소분지로 구분된 다. 분지충전물은 하부로부터 비화산성의 순수 퇴 적물로 구성된 신동층군, 부분적으로 화산성 물질 을 함유하는 하양층군, 산성 또는 중성의 화산암류 와 화산성 퇴적암으로 구성된 유천층군 그리고 이 들 모두를 관입하는 불국사화강암류로 구성된다 (그림 1; Chang, 1975, 1977; Choi, 1985, 1986; Chang *et al.*, 1997).

구산동응회암은 밀양소분지와 의성소분지를 가 로질러 분포하며, 약 1~8 m 두께로 200 km 이상 연 장된다. 이 응회암은 유문-데사이트질 조성의 부석 편이 거의 없고 결정함량이 높은 독특한 화쇄류암으 로 야외에서 쉽게 인지 가능하여 경상분지의 대표적 인 건층으로 알려져 왔다(Chang et al., 1997, 1998; Jeon and Sohn, 2003; Jeong et al., 2005). 최근 연구 들(Jwa and Jeong, 2002; Jeong et al., 2005; Sohn et al., 2005, 2009)에 따르면, 구산동응회암은 퇴적구조, 모드조성 그리고 기질의 화학조성에 근거하여, 대구광 역시 현풍을 기점으로 남부구산동응회암(SKT: Southern Gusandong Tuff)과 북부구산동응회암(NKT: Northern Gusandong Tuff)으로 구분된다(그림 1b).

SKT는 밀양소분지 함안층의 최상부에, NKT는 밀양소분지의 함안층과 진동층의 경계와 의성소분 지의 사곡층과 춘산층의 경계에 각각 분포한다. 또 한, 구산동응회암은 내부구조와 입자조성에 따라 수 직적으로 기저층상층(BLD: Basal Layered Division), 괴상층(MD: Massive Division), 상부층상층(SUD: Stratified Upper Division)으로 나누어진다(Jeon and Sohn, 2003; Jeong *et al.*, 2005; Sohn *et al.*, 2005, 2009; Jeong, 2006). 일반적으로 SKT는 하위의 이암 을 정합적으로 피복하는 BLD와 그 상위의 MD로 이루어지며, SUD는 나타나지 않는다(그림 2). 반면, NKT는 BLD가 없으며, MD와 SUD로 구성된다. 기질의 함량은 BLD가 셋 중에서 가장 적으며, MD의 경우는 NKT보다 SKT에서 기질함량이 더 높은 특징을 보인다. 기질의 화학조성은 SKT는 유문암으로 나타나는 반 면, NKT는 유문암, 데사이트 그리고 조면암에 이르 기까지 다양하다(Jeong *et al.*, 2005; Jeong, 2006).

저콘 U-Pb CHIME, K-Ar 전암연대, 저콘 LA-ICP-MS (Laser Ablation ICP-MS), 저콘 SHRIMP U-Pb 등의 다양한 연대측정을 통해 구산동응회암의 분출시기는 96~104 Ma로 알려져 있다(Chang et al., 1998; Jwa and Jeong, 2002; Jwa et al., 2009; Kim et al., 2013). 한편, 대자율이방성 및 골격입자배열 연구 (Jeong, 2006; Sohn et al., 2009)에 따르면, 구산동응 회암은 현재 노출되어 있는 노두의 동쪽에 위치한 여 러 개의 화구로부터 분출하여 분지의 경계부 또는 서 쪽을 향해 수 십 km 이상 흘러간 것으로 해석된 바 있다. 또한, NKT와 SKT는 성인이 다른 둘 이상의 마그마로부터 분출하였으며, SKT는 두 번의 강력한 폭발과 화산재 분출에 의해 화쇄난류 기원의 BLD와 화쇄류 기원의 MD를 형성시킨 것으로 해석하였다

Fig. 2. Outcrop photographs of the southern Gusandong Tuff (SKT) at KT11 (a) and KT18 sites (b). The SKT is divided into basal layered division (BLD) and massive division (MD).

(Jeong, 2006; Sohn et al., 2009).

3. 연구방법

3.1 대자율이방성과 역미세구조

대자율은 외부자기장이 작용했을 때 물질이 자화 되는 정도로서 물질의 고유한 특성이다. 암석 시료 에 외부자기장(\vec{H})을 가하게 되면 그 시료는 외부자 기장에 비례하여 유도자기(\vec{M})를 가지게 되고, 이때 의 비례상수가 대자율이 된다(magnetic susceptibility; k). 또한, 대자율은 외부자기장이 가해지는 방 향에 대해 각기 다른 크기를 가지는 2차형 텐서의 특 성을 보인다. 대자율이방성의 텐서를 구하기 위해서 는 최소 6개 방향의 측정이 필요하며 측정된 방향의 수

Fig. 3. Principles of AMS method for determining rock fabrics (Borradaile, 1988; Tarling and Hrouda, 1993). (a) A rock fabric represented by (b) an AMS ellipsoid. Three orthogonal axes of the ellipsoid correspond to maximum (k₁), intermediate (k₂), and minimum (k₃) principal axes. (c) 15 position scheme for measuring the AMS of a sample. (d-g) Normal AMS ellipsoids and results corresponding to no-preferred, flattened, stretched, flattened and stretched rock fabrics, respectively.

가 많을수록 정밀도가 증가하게 된다. 각 방향에 대한 대자율 크기로부터 구해진 고유벡터(eigenvector) 와 고유값(eigenvalue)을 계산하면 대자율이방성 타 원체(AMS ellipsoid)를 정의할 수 있으며, 고유벡터와 고유값은 대자율이방성 타원체의 세 주축(principal axes; k₁, k₂, k₃)의 방향과 크기에 각각 대응한다(그 림 3a-c). 이 세 주축은 서로 수직하며, 대자율의 크 기가 가장 큰 k₁축이 타원체의 장축에 해당되고, 대 자율의 크기가 가장 작은 k₃축이 타원체의 단축에 해당된다(k₁≧ k₂≧ k₃).

대자율이방성은 광물의 결정학적 특징에 의한 이방 성(crystalline anisotropy)과 광물입자의 형태로 인한 이방성(shape anisotropy)으로 인해 발현된다(Tarling and Hrouda, 1993; Tauxe, 2010). 대개의 경우, 형태 이방성이 대자율이방성에서 보다 중요하게 작용하며, 입자의 장축방향이 단축방향에 비해 더 높은 대자율 을 가지게 된다. 따라서 k₁은 입자들의 장축방향에, k₃ 는 입자들의 단축방향에 각각 대응되므로 대자율이방 성 타원체의 방향과 모양(즉, 자기미세구조)은 암석을 구성하는 입자의 실제 방향과 형태를 반영하게 된다.

자연의 암석은 다양한 종류의 입자(광물)들로 구성 되므로 대자율이방성은 암석을 구성하는 모든 입자들의 대자율 합으로 나타나며, 개별 입자들의 모양과 배열 상태에 따라 결정된다(Tarling and Hrouda, 1993; Cho, 2014). 예를 들어, 암석을 구성하는 입자들이 신장되거 나 압축되어 그 형태와 배열이 규칙적으로 발달한다면 입자들의 장축방향으로 k₁이, 단축방향으로 k₃가 정의 되어 다양한 유형의 대자율이방성 타원체를 갖게 된다 (그림 3d-g). 반면, 입자들의 배열이 무질서하거나, 구 형의 입자들로 이루어진 경우에 암석의 대자율은 방향 에 관계없이 일정한 등방성의 특징을 갖게 된다.

앞서 언급한 바와 같이, 일반적으로 자기미세구조 는 암석의 실제 미세구조와 유사한 정미세구조로 나 타나지만, 특수한 경우에 자기미세구조의 k1이 입자 의 단축방향에, k3가 입자의 장축방향에 대응되는(즉, k1과 k3가 서로 뒤바뀐) 역미세구조를 보여주기도 한 다. 그림 4a와 4b와 같이, 암석의 실제 선구조에 평행한 방향을 X축, 면구조에 수직한 방향을 Z축으로 정의 했을 때, 정미세구조는 X축과 평행하게 k1축이, Z축 과 평행하게 k3축이 각각 정의된다. 반면, 역미세구조 의 경우는 X축과 평행하게 k3축이, Z축과 평행하게 k1축이 각각 정의됨으로써, 자기미세구조는 암석의 실제 미세구조와는 전혀 다르게 표현된다. 이러한 역 미세구조의 원인이 되는 광물로는 전기석(tourmaline), 근청석(cordierite), 자류철석(pyrrhotite), 철을 함유 한 탄산염암(Fe-bearing carbonate) 그리고 강자성 (ferrimagnetism)의 단자기구역 자철석(single-domain magnetite)이 보고되고 있다(Hrouda, 1982; Potter and Stephenson, 1988; Rochette, 1988; Rochette *et al.*, 1992; Winkler *et al.*, 1996). 특히, 이들 중 강자성 광물은 암석에 소량만 포함되어 있어도 암석의 자기 적 특성을 지배하기 때문에 단자기구역 자철석이 역 미세구조의 가장 주요한 원인물질로 알려져 있다.

한편, 암석 속에 정미세구조와 역미세구조를 가지 는 입자들이 혼합되어 있을 경우의 자기미세구조는 두 구조의 함량비에 따라 혼합미세구조(intermediate fabric)와 같은 또 다른 유형이 나타나게 된다. 두 미세 구조의 혼합에 따른 결과를 설명하기 위해 제시된 이 론적 모델(Rochette et al., 1992; Ferré, 2002)은 그림 4c와 d와 같다. 두 구조가 혼합된 경우, X축 방향으로 의 대자율은 정미세구조의 k1과 역미세구조의 k3의 합, Y축 방향으로의 대자율은 정미세구조의 k2와 역 미세구조의 k2의 합, 그리고 Z축 방향으로의 대자율 은 정미세구조의 k3와 역미세구조의 k1의 합으로 표 현될 수 있다. 두 조직의 혼합비가 변화함에 따라, X, Y, Z 축에 대한 대자율 크기는 점차 증가 또는 감소하 는 선형의 그래프로 표현된다. 예를 들어, 정미세구조 의 비율이 점점 증가하는 경우 X축 방향의 대자율은 점점 증가하고 Z축 방향의 대자율은 점점 감소하게 되며, 그 결과 특정 혼합비에 이르면 각 축(X, Y, Z)의 대자율 크기의 순서가 뒤바뀌게 된다. 이 때, 각 축의 대자율 크기의 순서 변화는 단성분(end-member)인 역미세구조와 정미세구조의 형태(즉, 이방성타원체의 세 주축의 상대적 크기)에 좌우되며, 결과적으로 다양 한 유형의 주축의 위치변화가 나타나게 된다.

3.2 실험 방법

이번 연구에 사용된 시료는 야외에서 직접 휴대용 착암기를 이용하거나 정향된 암괴샘플(block sample)을 채취한 후 실내 착암기를 이용하여 직경 1인 치의 코어로 제작되었다. 시료의 정향은 야외지질조 사용 컴파스를 이용하였고, 채취된 코어시료는 절단 기를 사용하여 구형에 가장 가까운 형태인 높이/직 경 비율이 0.9의 원주형 시편으로 제작되었다. 기존에 연구된 구산동응회암의 여러 지점들 중, 역미세구조가 의심되는 KT11(k₃가 수평)과 18 지점(k₁ 이 수직, k₃가 수평)에서 총 50개의 시편이 제작되었으 며, BLD (KT11B와 KT18B)와 MD (KT11M과 KT18M) 를 구분하여 열처리와 대자율이방성 분석이 실시되 었다. 열처리는 각 시편별로 상온에서 700℃까지 약 10~30 단계로 실시하였다. 단계별 열처리 온도는 저 온(상온~500℃)에서는 100℃의 넓은 간격으로, 50 0℃ 이 후부터는 5~20℃의 좁은 간격으로 설정하였 다. 대자율이방성 측정은 부산대학교 공동실험실습 관의 체코 AGICO사의 Kappabridge KLY-4S를 사 용하였으며, 이 기기의 정밀도는 2×10⁸ [SI], 정확도는 0.3%이다. 열처리는 영국 Magnetic Measurements 사의 MMTD80 열세척기를 이용하였다.

Fig. 4. Theoretical model showing k_n/k_m ratio against mixture ratio of normal and inverse (magnetic) fabrics. (a) A real rock fabric represented by (b) two different AMS ellipsoids due to normal (upper) and inverse (lower) magnetic fabrics. (c, d) Theoretical model assuming progressive mixing of coaxial normal and inverse fabrics, showing the variations of orientation and magnitude of AMS axes according to the mixture ratio (modified from Rochette *et al.*, 1992; Ferré, 2002).

4. 실험 결과

4.1 KT11B, KT11M

KT11 지점의 BLD와 MD를 대상으로 각 14개 (KT11B)와 12개(KT11M)의 시편을 채취하여 단계 적 열처리에 따른 자기미세구조 변화를 분석한 대표 적인 결과는 그림 5와 같다.

먼저 KT11B의 결과를 살펴보면, 모든 시편들은 열처리 전에 아수직한 k₃와 아수평의 k₁으로 특징지 어지는 자기미세구조를 보이나, 열처리 후의 자기미 세구조 변화는 크게 두 가지 유형으로 나누어진다 (그림 5a). 즉 전 온도구간에서 세 주축의 방향이 변함 없이 유지되는 시편들(예, KT11B-03A, -04A, -08A) 과 k₃는 수직을 유지하나 k₁은 k₂를 향해 그리고 k₂ 는 k₁을 향해 방향이 회전되는 시편들(예, KT11B-02A, -05, -08B)로 구분된다. 전자에 속하는 시편의 k₁은 북동-남서 방향으로 고정되나, 후자 시편의 k₁은 열 처리 전에는 동-서 내지 서북서-동남동으로 다소 다 른 방향성을 보이다가 열처리 후에는 회전되어 북동 -남서 방향으로 전자의 k₁과 거의 평행하게 됨이 주 목된다. 한편, k₁의 방향 변화는 시편별로 차이는 있으 나 대체로 500~550℃ 온도구간에서 급격히 발생한다. 14개 시편들을 열처리한 결과를 같은 온도구간

별로 취합한 결과는 표 1과 그림 6a와 같다. 모든 온 도 구간에서 k₃ 축은 거의 수직한 방향으로 95% 신 뢰구간 5° 미만의 매우 양호한 군집도를 보이는 반

Fig. 5. Representative AMS results of each individual specimen in (a) KT11B and (b) KT11M sites during stepwise thermal treatment.

$\begin{array}{c cc c$	Temp	km	Mean	eigenvectors	6		AMS parar	neters	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(°C)	(u SI)	k1	k2	k ₃	L	F	Pı	Т
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\overline{\text{KT11B}}$ (n=	14)		2	2			2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ÙT	770	84/02	174/09	340/81	1.005	1.025	1.033	0.655
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	200	798	81/01	172/09	344/81	1.004	1.026	1.033	0.708
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	400	674	247/02	157/10	349/79	1.004	1.027	1.033	0.760
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500	626	68/00	158/11	337/80	1.005	1.032	1.040	0.727
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	550	782	65/01	155/12	328/79	1.014	1.072	1.094	0.661
580 1,325 61/01 151/10 326/80 1.028 1.150 1.197 0.675 600 1,494 60/01 150/11 328/79 1.035 1.319 1.406 0.780 670 2,334 62/01 152/11 329/79 1.037 1.361 1.460 0.780 680 2,447 62/01 152/11 329/79 1.040 1.388 1.497 0.786 700 2,371 64/02 154/11 325/79 1.040 1.395 1.505 0.787 KT11M (n=12) UT 734 02/02 269/54 93/36 1.016 1.005 1.022 -0.510 200 758 179/04 270/10 66/83 1.003 1.011 1.016 0.531 500 574 27/04 296/12 136/78 1.005 1.023 1.030 0.646 560 552 32/03 30/1/15 132/75 1.003 1.042 1.051 0.866 <td>570</td> <td>1,064</td> <td>61/01</td> <td>151/11</td> <td>327/79</td> <td>1.023</td> <td>1.121</td> <td>1.158</td> <td>0.673</td>	570	1,064	61/01	151/11	327/79	1.023	1.121	1.158	0.673
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	580	1,325	61/01	151/10	326/80	1.028	1.150	1.197	0.675
$\begin{array}{c} 650 & 2.222 & 241/00 & 151/11 & 332/79 & 1.035 & 1.319 & 1.406 & 0.780 \\ 670 & 2.334 & 62/01 & 152/11 & 327/79 & 1.037 & 1.361 & 1.460 & 0.788 \\ 700 & 2.371 & 64/02 & 154/11 & 325/79 & 1.040 & 1.388 & 1.497 & 0.786 \\ \hline 700 & 2.371 & 64/02 & 154/11 & 325/79 & 1.040 & 1.395 & 1.505 & 0.787 \\ \hline KTIIM (n=12) & & & & & & & & & & & & & & & & & & &$	600	1,494	60/01	150/11	328/79	1.029	1.185	1.239	0.711
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	650	2,222	241/00	151/11	332/79	1.035	1.319	1.406	0.780
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	670	2,334	62/01	152/11	329/79	1.037	1.361	1.460	0.788
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	680	2,447	62/01	152/11	327/79	1.040	1.388	1.497	0.786
$ \begin{array}{c} \mathrm{KT11M} \ (\mathrm{n}{=}12) \\ \mathrm{UT} & 734 & 02/02 & 269/54 & 93/36 & 1.016 & 1.005 & 1.022 & -0.510 \\ 200 & 758 & 179/04 & 270/10 & 70/79 & 1.007 & 1.001 & 0.014 \\ 400 & 667 & 181/04 & 272/10 & 68/79 & 1.006 & 1.006 & 1.011 & 0.027 \\ 500 & 593 & 11/01 & 281/07 & 106/83 & 1.003 & 1.011 & 1.016 & 0.531 \\ 550 & 574 & 27/04 & 296/12 & 136/78 & 1.005 & 1.023 & 1.030 & 0.646 \\ 560 & 552 & 32/03 & 301/15 & 132/75 & 1.003 & 1.042 & 1.051 & 0.866 \\ 580 & 533 & 31/05 & 300/15 & 140/74 & 1.006 & 1.062 & 1.076 & 0.814 \\ 600 & 530 & 31/05 & 300/15 & 140/74 & 1.009 & 1.069 & 1.087 & 0.760 \\ 640 & 518 & 29/06 & 297/15 & 141/74 & 1.018 & 1.076 & 1.101 & 0.613 \\ 660 & 510 & 28/07 & 296/16 & 142/73 & 1.019 & 1.090 & 1.119 & 0.640 \\ 680 & 506 & 23/10 & 291/15 & 145/72 & 1.020 & 1.094 & 1.124 & 0.642 \\ 700 & 477 & 18/13 & 285/14 & 150/71 & 1.020 & 1.078 & 1.105 & 0.585 \\ \hline \mathrm{KT18B} \ (\mathrm{m}{=}10) & & & & & & & & & & & & & & & & & & &$	700	2,371	64/02	154/11	325/79	1.040	1.395	1.505	0.787
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	KT11M (n=	-12)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	UT	734	02/02	269/54	93/36	1.016	1.005	1.022	-0.510
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	758	179/04	270/10	70/79	1.007	1.007	1.013	0.014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400	667	181/04	272/10	68/79	1.006	1.006	1.011	0.027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500	593	11/01	281/07	106/83	1.003	1.011	1.016	0.531
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	550	574	27/04	296/12	136/78	1.005	1.023	1.030	0.646
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	560	552	32/03	301/15	132/75	1.003	1.042	1.051	0.866
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	580	533	34/04	303/16	138/74	1.006	1.062	1.076	0.814
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	600	530	31/05	300/15	140/74	1.009	1.069	1.087	0.760
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	640	518	29/06	297/15	141/74	1.018	1.076	1.101	0.613
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	660	510	28/07	296/16	142/73	1.019	1.090	1.119	0.640
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	680	506	23/10	291/15	145/72	1.020	1.094	1.124	0.642
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	700	477	18/13	285/14	150/71	1.020	1.078	1.105	0.585
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KT18B (n=	10)	4 100	1 - 10 -		1 0 0 0			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	UT	1,476	155/88	15/02	285/02	1.003	1.031	1.037	0.815
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200	1,532	62/87	194/02	285/02	1.003	1.030	1.036	0.820
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400	1,147	22/75	194/15	285/02	1.002	1.023	1.028	0.870
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500	1,046	14/02	153/87	284/02	1.004	1.018	1.024	0.670
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	550	984	14/02	159/87	284/02	1.004	1.017	1.022	0.572
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	580	///	16/05	140/82	286/07	1.012	1.004	1.017	-0.485
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	600	/38	16/03	110/62	284/28	1.014	1.001	1.01/	-0.859
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	630	/03	16/03	106/13	2/4///	1.014	1.002	1.018	-0./1/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	650	610	1//04	108/04	244/84	1.009	1.016	1.026	0.2//
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6/0	568	16/05	10//06	244/83	1.008	1.022	1.031	0.483
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	680 700	538	15/05	106/05	241/83	1.007	1.023	1.031	0.518
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{700}{VT19M}$	-14)	19/03	109/04	240/83	1.005	1.020	1.027	0.372
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-14)	318/61	187/25	04/08	1.010	1.038	1.058	0 3 2 6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	1,131	240/61	107/23	94/08	1.019	1.036	1.056	0.320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	1,100	349/01	187/27	93/08	1.019	1.030	1.030	0.319
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	500	770	340/00	186/21	03/08	1.017	1.030	1.048	0.291
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	550	7/0	351/50	188/20	93/08	1.013	1.030	1.047	0.310
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	570	690	357/77	188/43	93/07	1.014	1.027	1.042	0.527
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	580	645	01/31	176/50	270/02	1.015	1.022	1.037	_0 270
630 610 01/29 134/51 257/24 1.021 1.012 1.034 -0.276 630 610 01/29 134/51 257/24 1.025 1.010 1.036 -0.448 650 583 00/24 112/39 247/41 1.027 1.011 1.040 -0.405 670 546 01/19 98/20 231/62 1.025 1.050 1.078 0.324 700 471 00/19 97/20 231/62 1.027 1.051 1.081 0.305	600	629	00/33	171/56	267/05	1.021	1.012	1.034	-0.270
650 583 00/24 112/39 247/41 1.025 1.010 1.030 -0.446 670 546 01/19 98/20 231/62 1.025 1.050 1.040 -0.405 700 471 00/19 97/20 231/62 1.027 1.051 1.081 0.324	630	610	01/29	134/51	257/03	1.021	1 010	1.034	-0.278
670 546 01/19 98/20 231/62 1.027 1.011 1.040 -0.405 700 471 00/19 97/20 231/62 1.027 1.051 1.081 0.324	650	583	00/24	112/39	237/24	1.025	1 011	1.050	-0.405
700 471 00/19 97/20 231/62 1.027 1.051 1.081 0.305	670	546	01/19	98/20	231/62	1.027	1.050	1.078	0 324
	700	471	00/19	97/20	231/62	1.027	1.051	1.081	0.305

Table 1. Summary of AMS data during stepwise thermal treatment.

UT : Before thermal treatment (Untreated); *n* : number of specimens; k_m : mean susceptibility, $(k_1+k_2+k_3)/3$; mean eigenvectors : site- mean directions, declination/inclination of k_1 (maximum), k_2 (intermediate), k_3 (minimum); *L* : lineation, k_1/k_2 , after Balsley and Buddington (1960); *F* : foliation, k_2/k_3 , after Stacey *et al.* (1960); P_J : corrected anisotropy degree, exp[2 { $(n_1-n_m)^2+(n_2-n_m)^2+(n_3-n_m)^2$ }]^{1/2}, $n_1=lnk_1$, $n_2=lnk_2$, $n_3=lnk_3$, $n_m=(n_1+n_2+n_3)/3$, after Jelínek (1981); *T* : shape parameter, [($2ln(k_2/k_3)/ln(k_1/k_3)$]-1, after Jelínek (1981) and Hrouda (1982).

Fig. 6. Total AMS results of all specimens of (a) KT11B, (b) KT11M, (c) KT18B, and (d) KT18M sites at each thermal treatment step. Gray stereonets instruct the temperature ranges in which the directional changes of AMS principal axes rapidly occur.

면, k₁은 열처리 전에 동-서 방향의 것이 우세하나, 열처리가 진행되면서 북동-남서 방향으로 회전되어 점점 군집도가 증가하는 경향이 뚜렷이 인지된다. 580℃의 열처리 온도에 이르면, 모든 k₁은 매우 높은 군집도로 북동-남서 방향으로 배열되게 되며 그 이 상의 온도에서는 큰 변화가 인지되지 않는다.

다음으로 KT11M의 결과를 살펴보면, 열처리 전 시편들의 자기미세구조는 두 가지 유형 즉, 아수평의 k1과 아수직의 k3를 가지는 것(이하 그룹 A)과 k1과 k3 가 모두 아수평인 것(이하 그룹 B)으로 구분된다(그림 5b). 그룹 A는 열처리 동안 전 온도구간에서 세 주축의 방향이 변화되지 않는 것(예, KT11M-12A)과 k3는 고 정되나 k1과 k2가 각각 서로의 방향을 향해 방향이 변 화되는 것(예, KT11M-09A)이 함께 관찰된다. 한편, 그룹 B에 속하는 시편들(예, KT11M-03, -04, -06)은 열처리 후 자기미세구조의 세 주축이 모두 변화하여 다소 복잡한 양상을 보인다. 열처리 전 아수평의 k₃는 열처리 후 k2를 향해 이동하여 거의 수직한 방향이 된 다. 열처리 전 아수직한 k2는 저온에서 k3를 향해 이동 하여 수평에 가까워진 후, 다시 k1을 향해 회전되는 두 단계의 방향 변화를 보인다. 한편, k1은 k3를 향해 방 향이 회전된다. 최종적으로 열처리 후 k1, k2 그리고 k3 는 각각 열처리 전의 k₃, k₁ 그리고 k₂와 거의 평행한 방향이 된다. 이러한 주축의 방향 변화는 앞선 KT11B 의 경우와 유사하게 500~550℃ 온도구간에서 시작되 어 580~600℃ 구간에서 거의 종료되어 더 이상의 변 화는 관찰되지 않는다. 한편, 예외적으로 KT11M-10 시편과 같이 아수평의 k3와 아수직의 k2가 열처리 후 에도 크게 방향이 변화되지 않는 것들도 관찰된다.

KT11M 지점 모든 시편의 열처리 결과를 같은 온도 구간 별로 살펴보면(표 1; 그림 6b), 열처리 전 k₃는 수 직과 수평에 이르기까지 다양한 경사를 보이나, 약 55 0℃의 열처리 후에는 대부분 경사가 고각으로 변화되어 높은 군집도를 보이게 된다. 또한, 열처리 전에 다양한 경 사를 보이는 k₂의 경우에는 열처리 후 대부분 북서-남 동 방향으로 거의 수평하게 방향이 변화된다. 한편, k₁ 은 열처리 전과 후 모두 수평의 경사를 가지면서 분산된 경향을 보이며, 열처리 전에 남-북 방향이 우세하였으 나 열처리 후에는 북동-남서 방향이 우세해진다.

4.2 KT18B, KT18M

KT18 지점의 BLD와 MD에서 각각 10개(KT18B)

와 14개(KT18M)의 시편을 채취하여 열처리에 따른 자기미세구조 변화를 분석하였으며, 대표적인 결과 는 그림 7과 같다.

먼저 KT18B의 결과를 살펴보면, 열처리 전 시편 들은 두 유형 즉, 아수평의 k1과 k3를 가지는 것들(이 하 그룹 A) 그리고 아수직의 k₁과 아수평의 k₃의 것 들(이하 그룹 B)로 구분된다(그림 7a). 그룹 A에 속 한 시편들(예, KT18B-04A, -04B, -05B, -08B)은 열처 리 후 k1의 방향 변화가 거의 없는 반면, k3와 k2는 열 처리 후에 서로 방향이 뒤바뀌는 특징을 보인다. 이러한 방향 변화는 약 580℃에서 시작되어 650~670℃ 부 근에서 종료된다. 그룹 B에 속한 시편(예, KT18B-02A, -02B)들은 열처리가 진행됨에 따라 세 주축의 방향 이 모두 변화한다. 즉, k1은 열처리 전 k2의 방향으로, k2는 열처리 전 k1의 방향을 거쳐 k3 방향으로, k3는 열처리 전 k1의 방향으로 변화된다. 이러한 과정에 서 열처리 전 거의 수직하였던 k1 축이 열처리 후에 는 수평하게 되어 최종적으로는 그룹 A(열처리 전 에 k1이 수평이며 열처리 후에도 변화하지 않음)의 k1 방향과 유사해진다. 주축의 방향 변화가 일어나 는 온도를 살펴보면, 약 400~550℃ 구간에서 k1과 k₂의 방향 변화가 먼저 발생한 후, 약 500~600℃에 서 k₃의 방향 변화가 주로 일어난다.

KT18B 시편들의 열처리 결과를 같은 온도구간 별로 살펴보면(표 1; 그림 6c), 열처리 전 k₁은 남-북 방향으로 아수평한 것과 아수직한 것으로 구분되는 데, 이들 중 아수직한 것들은 열처리 과정에서 모두 남-북 내지 북북동-남남서 방향으로 아수평하게 변 화되어 k₁ 축들의 군집도가 매우 향상된다. 이와 같 은 변화는 400℃ 부근의 열처리 단계에서 시작되어 580℃에 이르면 모든 시편들이 아수평하게 된다. k₃ 는 열처리 전 모든 시편들이 서북서-동남동 방향으 로 아수평한 특징을 보이는데, 열처리가 진행됨에 따라 이들 k₃는 모두 거의 수직하게 변화된다. k₃의 이러한 변화는 500℃ 부근부터 시작되어 약 670℃ 에서 완성된다. 또한, 열처리 전 수직한 k₂는 열처리 후 모두 서북서-동남동의 수평 방향에 군집된다.

KT18M의 결과를 살펴보면, 열처리 전 시편들의 자기미세구조는 고각의 k1과 동-서 방향으로 아수평 한 k3를 보여주고 있어 앞선 KT18B의 그룹 B와 유 사하다(그림 7b). 열처리 후 자기미세구조의 변화 또 한 k1이 열처리 전 k2의 방향으로, k2는 열처리 전 k1 의 방향을 거쳐 k₃ 방향으로, k₃는 열처리 전 k₁의 방 향으로 변화되어 유사한 특징을 보인다. 축의 방향 변 화가 발생하는 온도는 시료별로 차이가 있지만, 대 체로 580~600℃ 구간에서 급격히 발생한다. 일부 시 편(예, KT18M-15B)들은 열처리 후에도 주축 방향 의 큰 변화 없이 열처리 전 방향이 유지되기도 한다.

KT18M 시펀들의 단계별 열처리 결과를 같은 온 도구간 별로 정리하면(표 1; 그림 6d), 열처리 전 동-서로 수평한 방향에 군집되어 있던 k₃는 열처리가 진행됨에 따라 약 580℃ 구간부터 점차 경사가 커지 기 시작해, 약 670℃에서는 거의 모든 k₃가 고각으로 군집된다. 열처리 전 고각이던 k₁은 열처리가 진행 됨에 따라 약 500℃부터 경사가 얕아지며, 600℃ 이 상의 구간부터는 거의 모든 k₁이 남-북 방향으로 아 수평하게 군집된다.

5. 토 의

5.1 열처리를 통한 자기미세구조의 변화 유형

이번 연구를 통해 얻어진 단계별 열처리에 따른 암 석의 자기미세구조 변화는 이방성타원체 주축의 방향 변화(즉, 방향 변화가 발생하는 축의 종류)를 근거로 크게 4가지 유형(Type-0, I, II, III)으로 구분할 수 있 다(표 2). 각 유형의 특징을 정리하면 다음과 같다. 먼 저, Type-0은 열처리 과정에서 이방성타원체의 세 주 축의 방향이 모두 변화하지 않는 유형으로 열처리 전 과 후의 자기미세구조가 동일하다. 이 유형은 KT11B 의 시편들에서 주로 나타나며 KT11M과 KT18M에서도 일부 관찰된다. 반면, KT18B에서는 관찰되지 않는다.

Type-I은 k1과 k2의 방향이 변화하고, k3는 전 온도 구간에서 변화가 없는 유형이다(표 2). k1은 열처리 전

Fig. 7. Representative AMS results of each individual specimen in KT18B (a) and KT18M (b) sites during stepwise thermal treatment.

 Table 2. Classification of change patterns of magnetic fabric by thermal treatment.

의 k₂ 방향을 향해, k₂는 열처리 전의 k₁ 방향을 향해 그 위치가 변화하여, 열처리 후에 두 축의 위치가 거의 서로 뒤바뀐다. 축의 방향 변화는 약 500℃ 구간에서 처음 시작되어 약 580℃ 부근에서 완료된다. Type-I 에 속하는 시료들은 열처리 전과 후 k₃가 항상 수직 한 방향을 가지는 점이 특징이다. 이 유형은 Type-0 에서와 같이 KT11B과 KT11M 지점에서 주로 나타 나고, KT18B와 KT18M 지점에는 관찰되지 않는다. Type-II는 k₂와 k₃의 방향은 변화하는 반면, k₁은 전 온도구간에서 방향 변화가 나타나지 않는 유형이다(표 2). k₂는 열처리 전의 k₃ 방향으로, k₃는 열처리 전의 k₂ 방향으로 변화하여, 열처리 후에는 두 축의 위치가 서로 뒤바뀌게 된다. 그 결과, 열처리 전 수평의 k₃와 수직의 k₂가 열처리 후에는 수직의 k₃와 수평의 k₂로 변화된다. 또한, 모든 온도단계에서 k₁이 수평으로 북 북동-남남서 방향으로 배열됨이 특징이다. 이러한 축 의 변화는 580~600℃에서 시작되어 650~670℃ 구간 에서 완료된다. 이 유형은 KT18B에서만 관찰된다.

Type-III는 열처리 동안 세 주축의 방향이 모두 변화되는 유형이다. 이 유형은 열처리 전과 후 주축 들의 상호 위치 변화(즉, 어떤 축이 어느 축의 위치 로 변화하는가?)에 따라 두 아유형(Type-IIIA, IIIB) 으로 세분될 수 있다(표 2). Type-IIIA는 k1이 열처리 전 k2의 방향, k2는 열처리 전 k3 방향, k3는 열처리 전의 k1 방향으로 바뀌는 유형이다(k1→k2, k2→k3, k₃→k₁). Type-III_B는 k₁이 열처리 전 k₃의 방향, k₃는 열처리 전 k2 방향, k2는 열처리 전의 k1 방향으로 바 뀌는 유형이다(k1→k3, k3→k2, k2→k1). 이들 두 아 유형은 모두 열처리 전에 수평한 k₃가 열처리 후 거 의 수직하게 변하는 특징은 동일하나, k1과 k2의 변 화양상은 큰 차이를 보인다. Type-IIIA는 열처리 전 수직의 k1이 수평으로 변화하며, 수평의 k2는 고각도 로 변화하다 다시 수평 방향으로 변화하는 두 단계 변화를 보인다. 반면, Type-III_B는 열처리 전 수평의 k1이 수평으로 변화하며, 수직의 k2는 수평 방향으로 변화한 후 또 다시 수평 방향으로의 변화를 보인다. 또한, 두 아유형의 주축 방향 변화가 나타나는 온도 구간은 대체로 동일하지만, 축의 변화 순서에서 차 이가 난다. Type-III_A는 500~550[℃]에서 k₁과 k₂가 먼저 변화한 후, 580~600 [℃]에서 k₃가 변화하기 시작 한다. 특징적으로 k3 변화의 시작은 k2의 첫 번째 변 화가 종료될 때(즉, 수직에 가까운 방향이 되었을 때) 일어난다. 축의 방향이 변화하기 시작하는 온도는 시 편별로 다소 차이(±30℃)를 보이기도 하지만 축의 변 화 순서는 항상 동일하다. Type-III ▷는 500 ℃ 부근에서 k₂와 k₃가 먼저 변화한 후, 550~580℃ 온도구간에서 k1이 변화하기 시작한다. 또한, k1의 변화가 처음 시 작되는 온도에서 수직의 k2가 수평한 방향이 되며, 그 후 다시 수평 방향으로의 두 번째 변화가 일어난 다. Type-IIIA는 KT18B와 KT18M 그리고 Type-IIIB 는 KT11M과 KT18B의 시편들에서 관찰된다.

5.2 이론적 모델과의 비교

자연 암석인 구산동응회암 시료들의 단계적 열처 리에 따른 자기미세구조 변화의 특징(그림 8)을 앞서 설명한 이론적 모델(그림 4c, 4d; Rochette *et al.*, 1992, 1999; Ferré, 2002)과 비교해 보면, 2가지 측면에서 서로 상당한 유사성을 보인다.

첫째, 이번 연구에서 제안된 5가지 자기미세구조 유형의 주축들의 방향 변화는 이론적 모델에서 제시 되는 것과 매우 유사하게 나타난다. 열처리 동안 주 축의 방향 변화가 없는 Type-0은 그림 4c와 d의 정 미세구조 영역에서의 변화 패턴과 동일하다. k₃의 방 향 변화 없이 k₁과 k₂가 서로 뒤바뀌는 Type-I은 그 림 4d의 혼합미세구조 ②에서 정미세구조로 변화될 때의 축 변화 양상과 동일하며, k₁은 고정되고 k₂와 k₃의 방향이 뒤바뀌는 Type-II는 그림 4c의 혼합미 세구조 ②가 정미세구조로 변화될 때의 축 변화 과정

Fig. 8. Representative stereonets and diagrams showing the variations of direction and magnitude of AMS principal axes of (a) Type-0, (b) Type-I, (c) Type-II, (d) Type-III_A, and (e) Type-III_B during thermal treatment.

과 일치한다. 또한, 세 축 모두가 변화하는 Type-IIIA 와 Type-III_B는 각각 그림 4c와 4d의 혼합미세구조 ①이 혼합미세구조 ②를 거쳐 정미세구조로 변화될 때의 축 방향 변화 과정과 정확히 일치한다. 특히, 이 론적 모델과 동일하게 Type-I과 II는 하나의 온도구 간에서 주축 변화가 일어나는 반면, Type-III는 온도 를 달리하는 두 단계에 걸친 주축 변화를 보여주고 있다(그림 8b-e). 이상과 같이 구산동응회암의 열처 리를 통해 나타나는 자기미세구조의 다양한 변화는 암석 내 정미세구조와 역미세구조를 가진 입자들의 혼합비의 차이에 기인하며, 역 또는 혼합미세구조가 열 처리 통해 정미세구조로 전환되었음을 암시해 준다.

이론적 모델과의 또 다른 유사점은 주축들의 상대 적인 크기(eigenvalue)의 변화 양상에서도 관찰된 다. 각 유형별 열처리에 따른 세 주축의 크기 변화(그 림 8)는 이론적 모델에서 제시된 주축들의 크기 변화 양상(증감 및 변곡점)과 상당히 유사하게 나타난다. 예를 들어, 앞서 열처리 전·후 모두 정미세구조에 해 당되는 Type-0의 경우, k1과 k3의 크기는 각각 지속 적으로 증가와 감소하며 세 축의 변화 추이선이 교차 하지 않아(그림 8a) 이론적 모델과 부합된다(그림 4c, d). 나머지 유형에서도 이론적 모델과 일부 미세한 차이는 있으나, 세 주축의 크기 변화 추이선의 증가 혹은 감소 경향과 교차점 등의 전반적인 특징은 대체 로 일치한다. 특히, Type-IIIB의 경우는 이론적 모델 과 매우 훌륭한 일치를 보인다(그림 4d, 8e). 이러한 특징 또한 열처리 전 역미세구조가 열처리 후에 정미 세구조로 변환됨을 지시하는 것으로 해석된다.

한편, 실제 암석을 대상으로 한 이번 연구에서는 단계별 열처리 동안 주축들의 방향이 온도가 상승하 면서 대부분 점진적으로 변화하는 특징을 보여주는데 (그림 5와 7), 이는 이론적 모델(그림 4c와 d)과는 다른 양상이다. 이러한 차이는 균일한 자기학적 특징과 배열 을 갖는 정미세구조와 역미세구조 입자들의 혼합을 전 제로 하는 이론적 모델의 경우(Rochette *et al.*, 1992, 1999; Ferré, 2002) 주축들의 상호 방향 교환이 특정 혼합비(즉, 주축 크기 변화 추이선의 교차점)에서 순간 적으로 발생하는 것으로 계산되지만, 실제 자연 암석 을 구성하는 입자들은 매우 불균질(다양한 광물 조성, 입자 크기와 형태, 이방성 정도, 배열방향 등)한데 원 인이 있을 것으로 판단된다. 또한, 가열과정에서 복잡 한 광물·결정학적 변화(새로운 자성광물로의 생성, 변환, 자기구역 변화 등)와 이런 변화 정도의 온도 별 차이가 또 다른 원인이 될 것으로 추정된다.

5.3 골격입자 배열과의 비교

이번 연구에서는 암석의 실제 미세구조를 파악하 기 위해 각 지점별 대표시편 1개를 선별하여 골격입 자 배열 분석을 실시하였으며, 그 결과를 열처리 전 과 후의 자기미세구조와 비교하였다(그림 9). 골격 입자 배열 분석은 현미경하에서 관찰되는 결정편과 암편들을 이용하였으며, 층리면에 평행한 면에서 입 자들의 장축 방향을 측정하여 평균 선주향을 결정한 후, 다시 평균 선주향에 평행하게 절단된 수직면 상 에서 장축 방향을 측정하여 경사를 결정하였다.

KT11B 지점 시편(KT11B-02C)의 골격입자는 층 리면 상에서 북동-남서 방향으로 우세한 배열을 보 이며, 수직면 상에서는 북동 방향으로 0~30° 그리고 북서 방향으로 10~20° 경사져 있다(그림 9a). 이 시 편의 열처리 전 자기미세구조는 아수직한 k₃와 동남 동 방향으로 수평한 k1을 가진다. 즉, 열처리 전 k3는 골격입자 배열과 거의 일치하나, k1은 골격입자 배 열과 큰 차이를 보이고 있다. 반면, KT11B 지점의 시편들 중 골격입자 배열분석을 실시한 KT11B-02C 의 바로 인접 시편인 KT11B-02A를 포함한 열처리 전에 동남동 방향의 k1을 가지는 시편들은 열처리 과정동안 Type-I에 해당하는 변화과정을 통해 k1이 북동-남서 방향으로 변화되어 실제 골격입자 장축의 우세 방향과 거의 평행해진다(그림 5a). 또한, 이 지 점 시료들의 온도구간별 전체 결과에서도 열처리 후 에 k1이 북동-남서 방향으로 수평하게 잘 군집됨이 확인된다(표 1; 그림 6a). 이러한 결과들은 모두 열처 리 후에 변화된 자기미세구조가 암석의 실제 미세구 조와 일치함을 의미한다.

KT11M 지점 시편(KT11M-68)의 골격입자는 층 리면 상에서 북북서-남남동 방향으로 우세하게 배열 되며, 수직면 상에서 대부분 북북서를 향해 10~30° 경사진 특징을 보인다(그림 9b). 이 시편의 열처리 전 자기미세구조는 수직에 가까운 k₃와 북서-남동의 수평한 k₁을 가져 골격입자 배열과 거의 동일하다. 한편, KT11M 지점에서 열처리 후의 자기미세구조 변화 양상을 살펴보면, 세 축의 변화가 없는 Type-0 과 k₁과 k₂의 위치가 서로 바뀌는 Type-I이 함께 나 타나며(그림 5b), 열처리 전과 후의 k₁이 북서-남동 외에도 다양한 방향이 존재하고 있다(그림 6b). 따라 서 골격입자의 배열이 열처리 후의 자기미세구조와 도 일치하는지의 여부를 판단할 수 없다. 다만 앞서 논의한 이곳 여러 시편들의 분석결과를 참고할 때, 이 시편은 Type-0에 해당되어 열처리 후에 자기미 세구조의 변화가 없을 가능성이 높다.

KT18B 지점 시편(KT18M-09B)의 골격입자 배열 은 열처리 후의 자기미세구조와 매우 유사한 특징을 보인다(그림 9c). 이 시편의 열처리 전 자기미세구조 는 아수평의 k1과 k3로 정의되는 반면, 골격입자의 장축은 북동 방향이 우세하며 북동 내지 남서 방향 으로 0~30° 경사져 있어 암석의 실제 미세구조와 현 저한 차이를 보인다. 이 지점 시료들의 단계별 열처 리 결과를 살펴보면, KT18M-09B와 유사한 열처리 전 자기미세구조를 가지는 시편들은 열처리 과정에 서 Type-II의 변화과정을 통해 아수평한 k₃가 모두 수직하게 변화됨이 확인된다(그림 7a). 또한, 온도구 간 별 전체 열처리 결과에서도 열처리 동안 수평한 k₃가 열처리 후 모두 수직방향으로 변화되어 암석의 실제 미세구조와 거의 일치된다(표 1; 그림 6c).

한편, KT18M 지점 시편(KT18M-17B)의 골격입 자들은 북북동-남남서 방향의 장축이 우세하며, 경 사는 약 0~30°로 북북동과 남남서로 양분된다(그림 9d). 그러나 이 시편의 열처리 전 자기미세구조는 k₁ 이 거의 수직 방향을 그리고 k₃는 수평 방향을 보이 고 있어, 골격입자 배열과는 전혀 다르다. KT18M

Fig. 9. Representative grain fabrics measured in thin-section and AMS fabrics before heating of (a) KT18B, (b) KT18M, (c) KT18B, and (d) KT18M. Left: Distribution of long axes of grains in bedding plane. Center: Distribution of long axes of grains in section view. Right: AMS fabrics before heating.

지점의 열처리 결과를 살펴보면, 열처리 전 모든 시 편들이 거의 수직의 k1과 수평의 k3를 가지고 있으 나, 열처리 후에는 대부분 시편들이 Type-IIIA의 변 화과정을 통해 k1은 수평, k3는 수직으로 각각 변화 되어 골격입자 배열과 매우 유사하게 된다. 이러한 특 징은 골격입자 분석 시편의 인접 시료인 KT18M-17A 의 결과(그림 7b)와 온도구간 별 시료 전체 열처리 결과(표 1; 그림 6d)에서도 확인된다.

이상의 골격입자 분석결과를 요약하면, KT11M 을 제외한 나머지 세 지점에서 암석의 실제 미세구 조가 열처리 전의 자기미세구조와 차이를 보이는 반 면, 열처리 후의 자기미세구조와 일치하고 있다. 또 한, Type-0을 제외한 나머지 유형에서는 암석의 골 격입자 배열이 열처리 전 자기미세구조와는 다르나 열처리 후에는 서로 거의 일치하게 된다. 이러한 골 격입자 분석 결과는 역 또는 혼합미세구조가 열처리 후에 정미세구조로 변환됨을 지지해준다.

5.4 자기미세구조의 열적 향상(thermal enhancement)

대자율을 이용한 암석의 미세구조 연구가 시작된 이 래로, 자기미세구조의 열적 향상(thermal enhancement)은 흥미로운 연구주제 중 하나로 취급되고 있 다. 가열을 통해 암석의 자기미세구조나 대자율을 증대시키려는 노력은 1980년대부터 시작됐으며(e.g., Perarnau and Tarling, 1985; Xu et al., 1991 등), 2000년대에 이르러 그 필요성이 증대되어 퇴적암(e.g., Souque et al., 2002; Li and Kodama, 2005 등), 화 성암(e.g., Trindade et al., 2001; Minsta Mi Nguema et al., 2002 등), 변성암(e.g., Borradaile and Lagroix, 2000 등)을 대상으로 다양한 기법들이 개발 또는 적용 되고 있다. 또한, 대자율이방성의 역미세구조 문제가 대두되면서(Potter and Stephenson, 1988; Rochette et al., 1992, 1999; Ferré, 2002; Chadima et al., 2009), 열처리를 통해 이 문제를 해결하려는 시도가 진행되 고 있다(Trindade et al., 2001; Mintsa Mi Nguema et al., 2002). 이러한 연구들은 ① 열처리에 의해 자기미세 구조의 향상이 실제로 일어나는가? (즉, 군집도의 향 상이 일어나는가?), ② 열처리 동안 자기미세구조의 모양과 방향의 변화가 일어나는가? ③ 일어난다면, 변화에 필요한 온도는? ④ 열처리 후 변화된 방향은 암석의 실제미세구조와 일치하는가? ⑤ 역미세구조는 열처리 후에 정미세구조로 변환되는가? ⑥ 이와 같은 미세구조의 향상이 일어나는 원인과 기작(mechanism) 은 무엇인가? 등을 논의하고 있다. 이들 중 다수는 현 재까지 명확한 결론에 이르지 못하고 있으나, 이번 연구는 다양한 측면에서 이러한 의문에 대한 해답 또 는 실마리를 제시해준다.

이번 연구로 열처리에 의해 자기미세구조의 변화 가 발생함이 명백해졌다. 특히, 구산동응회암의 자기 미세구조 변화는 Type-0, -I, -II, -III_A, -III_B의 매우 체계적이고 특징적인 5가지 유형으로 구분될 수 있다 (표 2; 그림 5~7). 또한, 자기미세구조 변화의 온도도 유형별로 약간의 차이는 있으나, 대체로 특정한 온도 구간(500~600℃ 내외)에 집중됨이 관찰된다. 이와 같 은 일련의 체계적인 변화들과 아울러 열처리 후 자 기미세구조가 암석의 실제 미세구조에 매우 가까워 짐이 골격입자 분석 결과에서 확인된다. 따라서 이 번 연구에서 수행된 실험 결과를 종합하면 열처리 전의 역 또는 혼합미세구조가 열처리 후에 정미세구 조로 전환되는 것으로 해석된다.

구산동응회암과 같은 화쇄류암은 화쇄류의 흐름 에 의해 비늘배열(imbrication)의 미세구조가 주로 발달하게 되며, 이때 입자들의 단축은 층리면에 거 의 수직으로, 장축은 흐름 방향에 거의 평행하게 배 열된다. 구산동응회암의 골격입자 분석 결과에서도 이러한 특징이 잘 확인된다(그림 9). 따라서 k1은 화 쇄류의 흐름에 평행한 저각의 경사를, k3는 층리면 에 거의 수직한 방향을 가져야하며, 이와 같은 자기 미세구조는 화쇄류암을 대상으로 한 여러 선행 연구 에서 보고된 바 있다(Palmer and MacDonald, 1999; Zanella et al., 1999; Gurioli et al., 2002; Ort et al., 2003 등 다수). 그러나 구산동응회암의 KT11M, KT18B, KT18M 시편들의 열처리 전 자기미세구조는 k₃가 수평에 가까울 뿐만 아니라, KT18B와 KT18M은 열 처리 전 k1이 거의 수직으로 나타나 골격입자 배열 과 현저한 차이를 보인다(표 1; 그림 5~7). 이와 같이 수직의 k1과 수평의 k3로 특징되는 자기미세구조는 기존에 보고된 화쇄류암의 자기미세구조와 큰 차이 를 가지며, 화쇄류암의 통상적인 퇴적 메커니즘으로 는 설명하기 어렵다. 따라서 이들 비정상적 자기미 세구조는 역 혹은 혼합미세구조로 해석된다.

KT11B의 열처리 전 k₃는 층리면에 수직하여 골 격입자의 배열 및 화쇄류암의 통상적 미세구조와 일 치하는데, 열처리 후에도 방향 변화가 없다(그림 5a, 6a). k1은 열처리 전 저각으로 북동-남서에서 서북서 -동남동에 분산되는데, 이들 분산된 k1은 열처리 후 에 Type-I의 변화경로를 통해 북동-남서 방향에 양 호하게 군집되는 특징을 보인다. KT11M은 열처리 전 수평의 k₃와 수직의 k₃가 함께 나타난다(그림 5b, 6b). 주목할 점은 이들 중 골격입자 배열과 일치하는 수직의 k₃는 열처리 후에 변화가 없으나, 수평의 k₃ 는 열처리 과정에서 Type-IIIB의 변화과정을 통해 수직하게 바뀌어 골격입자 배열과 유사하게 되며 군 집도가 매우 향상된다. 한편, KT18B와 KT18M의 결 과는 자기미세구조 향상에 있어 열처리가 매우 효과 적임을 보다 명확히 보여준다(그림 6, 7). 두 지점에 서 열처리 전 수평한 k3를 가지는 모든 시편들은 열 처리과정에서 Type-II 또는 Type-III의 변화과정을 통해 수직으로 바뀐다. 또한, 열처리 전 두 지점에서 수직 또는 수평하게 분포하던 k1들이 열처리 후에는 모두 남-북 내지 북북동-남남서 방향으로 거의 수평 하게 군집된다. 특히, KT18B에서 열처리 전 수평하 던 k1은 방향의 변화가 발생하지 않는 반면, 수직하 던 k1들은 Type-IIIA의 변화과정을 통해 북북동-남 남서 방향으로 수평하게 됨은 주목할 만하다(그림 6c). 이상의 결과들은 열처리 전에 혼합미세구조가 열처리 후에 정미세구조로 변환됨으로써 자기미세 구조가 월등히 향상됨을 강력히 지시해준다. 더불어 열처리를 실시하지 않은 k1의 방향으로 화쇄류의 고 유향 및 근원화도 위치를 해석함에 있어 세심한 주 의가 필요함을 알려준다.

한편, 일부 연구자들은 자기미세구조의 열적 향상 은 모사조직(mimetic fabric)과 밀접히 관련하는 것으 로 보고하고 있다(Perarnau and Tarling, 1985; Tarling and Hrouda, 1993; Trindade *et al.*, 2001; Mintsa Mi Nguema *et al.*, 2002). 이들은 암석이 가열됨에 따라 기질(matrix)에 포함된 운모류, 녹니석, 능철석, 황철석, 점토광물 등과 같은 함철광물(Fe-bearing minerals)이 새로운 자성광물을 생성시키게 되며, 이때 새로이 만들어지는 자성광물들은 이미 형성된 암석 조직의 틈[일종의 거푸집(mold) 역할을 함]을 따라 자라나게 되면서 열적 향상이 발생하는 것으로 설명하고 있다. 실제로 많은 연구들은 운모류, 녹니 석, 점토광물과 같은 함철 상자성광물(Fe-bearing paramagnetic minerals)이 가열과정에서 자철석을 형성시킴을 보고하고 있다(Hrouda, 1994; Sagnotti et al., 1998; Park et al., 2013 등 다수). 구산동응회암 의 모드조성 분석 결과에서 약 0.9~5.6 vol.%의 흑운모 와 녹니석의 결정편이 존재함이 보고되고 있어(Jeong et al., 2005), 유사한 메커니즘이 열적 향상의 원인으 로 추정된다. 그러나 자기미세구조의 열적 향상의 구체적인 원인과 메커니즘을 밝히기 위해서는 CT분 석 등을 이용한 정밀한 미세구조 분석, 자기이력곡 선 등을 이용한 도메인 분석 그리고 EPMA, SEM, TEM 등을 이용한 열처리 전·후의 자성광물 변화의 분석이 추가적으로 실시되어야 할 것이다.

6. 결 론

이번 연구에서는 경상분지 구산동응회암을 대상 으로 단계별 열처리를 통해 자기미세구조 변화를 분 석하고, 열처리에 따른 자기미세구조의 향상에 대해 논의하였다.

단계별 열처리에 따른 자기미세구조의 변화는 주 축의 방향변화에 근거하여, ① 모든 온도 구간에서 세 주축 방향의 변화가 없는 Type-0, ② k₁이 열처리 전의 k2를 향해, k2는 열처리 전의 k1을 향하여 방향 이 바뀌며, k₃의 방향 변화가 없는 Type-I, ③ k₂와 k3의 방향이 서로 위치가 뒤바뀌는 반면, k1은 변화 가 없는 Type-II, ④ 세 축의 방향이 모두 변화하여 서로의 위치가 뒤바뀌는 Type-III의 4가지 유형으로 분류된다. 또한, Type-III는 k1→k2, k2→k3, k3→k1 으로 변화하는 Type-III_A와 k₁→k₃, k₃→k₂, k₂→k₁ 으로 변화하는 Type-IIIB의 두 아유형으로 분류된 다. 각 유형별 이방성타원체 주축의 방향과 크기의 변화 양상은 역미세구조와 정미세구조의 혼합에 근 거한 이론적 모델과 잘 일치하며, 열처리 전 혼합미 세구조를 포함한 역미세구조가 열처리 후에 정미세 구조로 변환되는 것으로 해석된다. 또한, 골격입자 배열 분석 결과에서도 암석의 실제 미세구조와 상이 한 열처리 전 자기미세구조가 열처리 후에는 유사한 방향으로 변화됨이 명확하게 확인된다. 이와 같은 특징들은 시료의 열처리를 통해 자기미세구조의 열 적 향상과 역미세구조 문제의 해결이 가능함을 보여 주는 중요한 결과이다. 한편, 자기미세구조의 열적 향상의 원인과 구체적인 메커니즘을 밝히기 위해서 는 보다 정밀한 미세구조 분석과 자성광물 변화에 대한 연구들이 추가적으로 수행되어야 할 것이다.

사 사

이 논문은 2012년과 2014년도 정부 재원의 한국 연구재단 기초과학연구사업(NRF-2012R1A1A4A0 1009929와 2014R1A2A1A11053102)의 지원을 받아 수행되었다.

REFERENCES

- Balsley, J.R. and Buddington, A.F., 1960, Magnetic susceptibility anisotropy and fabric of some Adirondack granites and ortho-gneisses. American Journal of Science, 258-A, 6-20.
- Borradaile, G.J., 1988, Magnetic susceptibility, petrofabric and strain - a review. Tectonophysics, 206, 203-218
- Borradaile, G.J. and Lagroix, F., 2000, Thermal enhancement of magnetic fabrics in high grade gneisses. Geophysical Research Letters, 27, 2413-2416.
- Chadima, M., Cajz, V. and Týcová, P., 2009, On the interpretation of normal and inverse magnetic fabric in dikes: Examples from the Eger Graben, NW Bohemian Massif. Tectonophysics, 466, 47-66.
- Chang, K.H., 1975, Cretaceous stratigraphy of southeast Korea. Journal of the Geological Society of Korea, 11, 1-23.
- Chang, K.H., 1977, Late Mesozoic stratigraphy, sedimentation and tectonics of southeastern Korea. Journal of the Geological Society of Korea, 13, 76-90 (in Korean with English abstract).
- Chang, K.H., Lee, Y.J., Suzuki, K. and Park, S.O., 1998, Zircon morphology, CHIME age and geological significance of Kusandong Tuff (Cretaceous). Journal of the Geological Society of Korea, 34, 333-342 (in Korean with English abstract).
- Chang, K.H., Park, S.O. and Kim, H.S., 1997, Cretaceous stratigraphy and geologic history of medial Kyongsang Basin: tectonics and volcanism. Geoscience Journal, 1, 2-9.
- Cho, H., 2014, Application of AMS (anisotropy of magnetic susceptibility) method to various geological settings. Ph.D. thesis, Pusan National University, Busan, 503 p (in Korean with English abstract).
- Cho, H., Kim, M.-C., Kim, H. and Son, M., 2014, Anisotropy of magnetic susceptibility (AMS) of the Quaternary faults, SE Korea: Application to the determination of fault slip sense and paleo-stress Field. Journal of the Petrological Society of Korea, 23, 75-103 (in Korean with English abstract).
- Cho, H., Son, M. and Kim, I.-S., 2007, Anisotropy of magnetic susceptibility (AMS) of granitic rocks in the eastern region of the Yangsan Fault. Economic and Environmental

Geology, 40, 171-189 (in Korean with English abstract).

- Choi, H.I., 1985, Sedimentology and its implications for stratigraphic classification of the Cretaceous Gyeongsang Basin. Journal of Geological Society of Korea, 21, 26-37.
- Choi, H.I., 1986, Sedimentation and evolution of the Cretaceous Gyeongsang Basin, southeastern Korea. Journal of the Geological Society, London, 143, 29-40.
- Ferré, E.C., 2002, Theoretical models of intermediate and inverse AMS fabrics. Geophysical Research Letters, 29, 1-4.
- Gurioli, L., Cioni, R., Sbrana, A. and Zanella, E., 2002, Transport and deposition of pyroclastic density currents over an inhabited area: the deposits of the AD 79 eruption of Vesuvius at Herculaneum, Italy. Sedimentology, 49, 929-953.
- Henry, B., Jordanova, D., Jordanova, N., Souque, C. and Robion, P., 2003, Anisotropy of magnetic susceptibility of heated rocks. Tectonophysics, 366, 241-258.
- Hobbs, B.E., Means, W.D. and Williarms, P.F., 1976, An outline of structural geology. John Wiley & Sons, New York, 571 p.
- Hrouda, F., 1982, Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5, 37-82.
- Hrouda, F., 1994, A technique for the measurement of thermal-changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International, 118.
- Jackson, M.J., 1991, Anisotropy of magnetic remanence - a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure and Applied Geophysics, 136, 1-28.
- Jelínek, V., 1981, Characterization of the magnetic fabric of rocks. Tectonophysics, 79, 63-67.
- Jeon, Y.M. and Shon, Y.K., 2003, Sedimentary characteristics and stratigraphic implications of the Kusandong Tuff, Cretaceous Gyeongsang Basin, Korea. Geosciences Journal, 7, 53-64.
- Jeong, J.O., 2006, Anatomy of the Cretaceous Kusandong tuff and the Miocene Paljori tuff, Korea: eruptive and depositional processes of basin-wide ignimbrites. Ph.D. thesis, Gyeongsang National University, Jinju, 171 p (in Korean with English abstract).
- Jeong, J.O., Jeon, Y.M. and Shon, Y.K., 2005, Petrography and modal compositional variations of the Cretaceous Kusandong Tuff, Korea. Journal of the Geological Society of Korea, 41, 73-90 (in Korean with English abstract).
- Jwa, Y.J. and Jeong, J.O., 2002, Spatial contrast within the Cretaceous Kusandong tuff: Chemical evidence. Fall Annual Conference of the Geological Society of Korea (Abstracts), 75 pp (in Korean).
- Jwa, Y.J., Lee, Y.I. and Orihashi, Y., 2009, Eruption age

of the Kusandong Tuff in the Cretaceous Gyeongsang Basin, Korea. Geosciences Journal, 13, 265-273.

- Kim, J.-S., Cho, H. and Kim, H.-G., 2013, SHRIMP U-Pb Zircon ages of the Gusandong (Kusandong) Tuff in the Cretaceous Gyeongsang Basin. Journal of the Petrological Society of Korea, 22, 235-249 (in Korean with English abstract).
- Li, Y.-X. and Kodama, K., 2005, Assessing thermal effects on magnetic fabrics of sedimentary rocks: Results from synthetic and natural samples. Geophysical Research Letters 32, L04314.
- Martín-Hernández, F., Lunebürg, C.M., Aubourg, C. and Jackson, M., 2004, Magnetic Fabric: Method and Application. Geological Society of London, 551 p.
- Mintsa Mi Nguema, T., Trindade, R.I.F., Bouchez, J.L. and Launeau, P., 2002, Selective thermal enhancement of magnetic fabrics from the Carnmenellis granite (British Cornwall). Physics and Chemistry of the Earth, 27, 1281-1287.
- Ort, M.H., Orsi, G., Pappalardo, L. and Fisher, R.V., 2003, Anisotropy of magnetic susceptibility studies of depositional processes in the Campanian Ignimbrite, Italy. Bulletin of Volcanology, 65, 55-72.
- Palmer, H.C. and MacDonald, W.D., 1999, Anisotropy of magnetic susceptibility in relation to source vents of ignimbrites: empirical observations. Tectonophysics, 307, 207-218,
- Park, M.E., Cho, H., Son, M. and Sohn, Y.K., 2013, Depositional processes, paleoflow patterns, and evolution of a Miocene gravelly fan-delta system in SE Korea constrained by anisotropy of magnetic susceptibility analysis of interbedded mudrocks. Marine and Petroleum Geology, 48, 206-223,
- Passchier, C.W. and Trouw, R.A.J., 2005, Microtectonics (2nd Ed.). Springer, 366 p.
- Perarnau, A. and Tarling, D.H., 1985, Thermal enhancement of magnetic fabric in Cretaceous sandstone. Journal of Geological Society, London, 142, 1029-1034.
- Potter, D.K., 2004, A comparison of anisotropy of magnetic remanence methods - a user's guide for application to palaeomagnetism and magnetic fabric studies. In: Martín-Hernández, F., Lunebürg, C.M., Aubourg, C. and Jackson, M., (eds), Magnetic Fabric: Method and Application. Geological Society, London, Special Publications, 21-35.
- Potter, D.K. and Stephenson, A., 1988, Single-domain particles in rocks and magnetic fabric analysis. Geophysical Research Letters, 15, 1097-1100.
- Rochette, P., 1988, Inverse magnetic fabric in carbonate bearing rocks. Earth and Planetary Science Letters, 90, 229-237.

- Rochette, P., Aubourg, C. and Perrin, M., 1999, Is this magnetic fabric normal? A review and case studies in volcanic formation. Tectonophysics, 307, 219-234.
- Rochette, P., Jackson, M. and Aubourg, C., 1992, Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Review of Geophysics, 30, 209-226.
- Sagnotti, L., Speranza, F., Winkler, A., Mattei, M. and Funiciello, R., 1998, Magnetic fabric of clay sediments from the external northern Apennines (Italy). Physics of the Earth and Planetary Interiors, 105, 73-93.
- Sohn, Y.K., Jeong, J.O. and Son, M., 2005, Long-runout pyroclastic surge on a Cretaceous alluvial plain, Republic of Korea, Terra Nova, 17, 13-24.
- Sohn, Y.K., Son, M., Jeong, J.O. and Jeon, Y.M., 2009, Eruption and emplacement of a laterally extensive, crystal-rich, and pumice-free ignimbrite (the Cretaceous Kusandong Tuff, Korea). Sedimentary Geology, 220, 190-203.
- Souque, C., Robin, P. and de Lamotte, D.F., 2002, Cryptic magnetic fabric of tectonic origin revealed by heating of sedimentary samples from the Corbières, France. Physics and Chemistry of the Earth, 27, 1253-1262.
- Stacey, F.D., Joplin, G. and Lindsay, J., 1960, Magnetic anisotropy and fabric of some foliated rocks from S.E. Ausralia. Geofisica Purae Applicata, 47, 30-40.
- Tarling, D.H. and Hrouda, F., 1993, The Magnetic Anisotropy of Rocks. Chapman and Hall, London, 227 p.
- Tauxe, L., 2010, Essentials of Paleomagnetism. University of California Press, Berkeley and Los Angeles, 489 p.
- Trindade, R.I.F., Mintsa Mi Nguema, T. and Bouchez, J.L., 2001, Thermally enhanced mimetic fabric of magnetite in a biotite granite. Geophysical Research Letters, 28, 2687-2690.
- Winkler, A., Florindo, F. and Sagnotti, L., 1996, Inverse to normal magnetic fabric transition in an upper Miocene marly sequence from Tuscany, Italy. Geophysical Research Letters, 23, 909-912.
- Xu, T.-C., Ye, S.-J. and Yang, F., 1991, A preliminary study of thermally enhanced magnetic fabric in the Tertiary sediments from the Quaidam basin, NW China. Studia Geophysica et Geodaetica, 35, 295-301.
- Zanella, E., De Astis, G., Dellino, P., Lanza, R. and La Volpe, L., 1999, Magnetic fabric and remanent magnetization of pyroclastic surge deposits from Vulcano (Aeolian Islands, Italy). Journal of volcanology and geothermal research, 93, 217-236.

Received	:	January	23,	2015
Revised	:	March	3,	2015
Accepted	:	March	4,	2015