원소분석기와 연계된 동위원소질량분석기(EA-IRMS)를 이용한 황안정동위원소비 측정의 정확도·정밀도 연구

김보경 · 황종연 · 김민섭 · 이상룡 · 이원석[‡]

국립환경과학원 환경측정분석센터

요 약

원소분석기와 연계된 동위원소질량분석기(EA-IRMS)를 이용한 황안정동위원소비 측정에 있어 δ^{34} S값의 신뢰성을 확보하기 위해 중간점검용 표준물질을 선정하고자 하였다. MgSO₄, Na₂SO₃, Na₂SO₄ 시료를 각각 시 료량이 증가하는 순서로 연속분석한 후 공시료를 측정한 결과, 공시료에서도 의미있는 피크크기(신호세기)가 나타났다. 이는 SO₂ (32 S¹⁶O⁶O⁺) 이온 피크의 꼬리끌림(peak tailing)이 메모리효과(memory effect)를 일으키 는 것으로 판단된다. 이에, 연속분석방법과 peak center 작업을 수행한 비연속분석방법 두가지로 δ^{34} S값을 비교 하였다. 인증표준물질인 EMA-P1을 연속으로 분석한 전자의 경우, δ^{34} S값이 (인증값 ± 1 σ) 범위에 해당되는 황 함량이 21.883 µg ~ 101.382 µg로서 -2.747‰ ~ -2.546‰ 로 측정되었고 정밀도는 0.139‰ 이었다. 비연속분석 방법인 후자의 경우, 황함량은 47.644 µg ~ 246.669 µg이며 δ^{34} S값은 -2.891‰ ~ -2.558‰ 로 기록되었고 정밀 도는 0.188‰ 이었다. 두 경우 모두 정밀도는 비슷하나 신뢰할 수 있는 시료량의 범위는 주기적으로 peak center 를 수행한 비연속분석방법이 더 넓었다. 그러나 두 방법 모두 황함량이 약 350 µg이상에서는 급격히 δ^{34} S값이 감소되는 것을 관찰 할 수 있었다.

주요어: 원소분석기, 안정동위원소질량분석기, δ^{34} S값, 황안정동위원소, 정밀도, 정확도, 원소함량, 피크높이

Bo-kyong Kim, Jong-yeon Hwang, Min-seob Kim, Sang Ryong Lee and Won-seok Lee, 2013, The Study on Accuracy and Precision of Sulfur Isotope Measurement Using Elemental Analyzer-Isotope Ratio Mass Spectrometer (EA-IRMS). Journal of the Geological Society of Korea. v. 49, no. 3, p. 351-361

ABSTRACT: Continuing calibration check (CCC) for measuring sulfur isotope composition using an Elemental Analyzer-Isotope Ratio Mass Spectrometer (EA-IRMS) is not yet sufficiently studied. A significant peak signal was observed at the blank samples after analyzing the samples of MgSO₄, Na₂SO₃, Na₂SO₄ with increasing sample amount. The memory effect was confirmed from the peak tailing of SO₂ (${}^{32}S^{16}O^{16}O^{+}$) ion. The measurements of $\delta^{34}S$ ($\pm 1\sigma$) values showed -2.747% ~ -2.546% of the precision 0.139% (21.883 S µg ~ 101.382 S µg) and -2.891% ~ -2.558% of the precision 0.188% (47.644 S µg ~ 246.669 S µg) for the successive and non-successive method, respectively. Both methods yielded the acceptable range and similar precision but showed a dramatic decrease of $\delta^{34}S$ value at the level of ≥ 350 S µg. However, the non-successive method that performed a regular peak center produced the wider sulfur range than the successive method.

Key words: EA, IRMS, δ^{34} S value, sulfur isotope, precision, accuracy, element contents, peak height

(Bo-kyong Kim, Jong-yeon Hwang, Min-seob Kim, Sang Ryong Lee and Won-seok Lee, Environmental Measurement & Analysis Center, National Institute of Environmental Research, Environment Research Complex, Gyeongseo-dong, Seo-gu, Incheon 404-708, Korea)

1. 서 론

원소분석기와 연계된 동위원소질량분석기(EA-IRMS,

Elemental Analyzer-Isotope Ratio Mass Spectrometer) 측정기술은 1980년대 초에 개발되어 고체시료의 탄 소안정동위원소비(¹³C/¹²C) 및 질소안정동위원소비

* Corresponding author: +82-32-560-8380, E-mail: boystone@korea.kr

(¹⁵N/¹⁴N) 분석을 용이하게 하였다. 반면, 황안정동 위원소비(³⁴S/³²S)는 이론적으로 분석이 가능하였으나 실질적인 측정기술은 1994년 이후로 발달하기 시작하 였다(Glesemann *et al.*, 1994; Grassineau, 2006; Fry, 2007). 일반적으로 안정동위원소비는 동위원소 분 별효과(fractionation effect)를 이용하여 환경분야 에서 다양한 무기 및 유기 물질의 거동 및 오염원의 기원을 추적하는 인자로 쓰인다(Barros *et al.*, 2010; Itoh *et al.*, 2011; Micić *et al.*, 2011). 이에 황안정동위 원소비는 탄소/질소안정동위원소비와 함께 추가로 안정동위원소비값을 제공함으로서 기원(source)식별 에 기여하게 되었다(Peterson and Howarth, 1987).

황안정동위원소비의 온라인 분석(on-line analysis) 시스템에서는 원소분석기에서 황이 포함된 유 기물 또는 무기물 시료를 연소시켜 SO2 가스로 전환 시킨 후 운반가스인 He에 의해 원소분석기와 질량 분석기 사이의 interface를 경유하여 질량분석기로 이동한다. 이동된 SO2 가스는 질량분석기 내부 ion source에서 두개의 이온종 ³²S¹⁶O¹⁶O⁺ (m/z=64)와 ³⁴S¹⁶O¹⁶O⁺ (m/z=66)로 이온화되고 δ³⁴S값을 구한 다. 그러나 Fry *et al*. (2002)는 δ³⁴S값 측정에 주의할 점이 산소안정동위원소이며, 산소안정동위원소비 $({}^{18}O/{}^{16}O)7$ ${}^{32}S^{16}O^{16}O^{+}$ (m/z=64) ${}^{24}S^{16}O^{16}O^{+}$ (m/z=66) ion beam에 기여를 하여 δ^{34} S값 계산에 오차를 유발 할 수 있다고 설명하였다. Studley et al. (2002)은 산 소안정동위원소비의 변동을 최소화시키는 방법으 로 시료에 V2O5를 약 10:1의 비율로 추가하여 기기 분석을 수행하였고 정밀도는 향상되나 정확도는 크 게 증가하지는 못하였다고 보고하였다. Hansen et al. (2009)은 분석시료에서 연소된 SO2 가스의 산소 공급원이 다양하므로 측정의 정확성이 감소된다고 설명하였고 산소공급원은 유기물질 시료 자체의 산소, 산소가스 실린더의 산소, 연소를 촉진시키는 V2O5와 CuO의 산소등이 있다고 보고하였다. Yanagisawa and Sakal (1983)는 분석시료에 V2O5-SiO2 혼합물 을 첨가하여 생성한 SO2가 일정한 산소안정동위원 소비를 유지하는 V2O5-SiO2의 혼합 조성비를 제시 하였다.

본 연구는 Kim *et al.* (2012, 2013)이 수행한 탄소 안정동위원소비값(δ¹³C값)과 질소안정동위원소비값 (δ¹⁵N값)의 정확도·정밀도 연구를 기반으로 황안정 동위원소비값(δ³⁴S값)의 정확도·정밀도 향상을 위 한 일련의 연구과제로 진행하였다. 원소분석기와 연 계된 동위원소질량분석기(IRMS)로 황안정동위원 소비를 측정함에 있어 산화력을 증대시키는 V₂O₅ (vanadium pentoxide)를 사용하지 않고 오직 인증 표준물질만을 사용하여 분석함으로써 시료의 양에 따라 δ³⁴S값이 어떻게 달라지는지를 확인하였다. 또 한, 신뢰성 있는 황안정동위원소 데이터를 생산하기 위해 적절한 시료 사용량과 고려해야 할 인자들 (factors)을 제시하고자 하였다.

2. 연구방법

2.1 시료준비

국제표준물질인 Canyon Diablo Troilite (CDT) 기준으로 실험실에서 사용하는 작업용표준물질인 이산화황 가스의 델타값을 보정하기 위해 국제원자 력기구(IAEA)에서 제공하는 IAEA S-1을 국제표준 물질로 사용하였다. 또한 Elemental Microanalysis 제조사의 인증표준물질 EMA-P1(고분자물질)을 70 ℃에서 24시간 오븐 건조시켜 동위원소질량분석기 정확도·정밀도 시험에 사용하였다. Elementar 제조 사의 원소분석용 표준물질 sulfanilamide도 동일한 조건에서 건조시켰다. 중간점검용(CCC, continuous calibration check) 시료로서 유효성 있는 물질을 선 정하기 위해 MgSO4, Na2SO3, Na2SO4를 사용하였 는데, 이들 역시 동일한 조건에서 건조시켰다. 표1 은 IAEA 국제표준물질과 Elemental Microanalysis 가 제공하는 인증표준물질의 안정동위원소비값이 며, 표 2는 인증표준물질과 원소분석용 표준물질의 원소함량이다.

2.2 안정동위원소비 분석

시료의 무게를 측정한 후 Tin boat (4 mm × 4 mm × 11 mm)에 담아 밀봉한 뒤 1150 °C 산화튜브와 850 °C 환원튜브로 설정된 원소분석기(Vario Micro Cube, Elementar Analysensysteme GmbH., Germany) 에서 연소시켰다. 연소가스는 99.995% 이상의 고순 도 산소를 사용하였고, 운반가스로는 99.999% 이상 의 고순도 He가스를 180 mL/min 속도로 흘려보냈다. 시료는 SO₂로 가스화가 되어 동위원소질량분석기(Isoprime 100, Isoprime Ltd., UK)로 주입되고, 작업용표준물질인 고순도 이산화황(99.9%) 가스도

Material (in‰)	¹³ C _{V-PDB}	¹⁸ O _{V-SMOW}	² H _{V-SMOW}	$^{34}S_{V-CDT}$
IAEA S-1 ^a				-0.30
EMA-P1 ^b	-27.85 ± 0.12	$+20.99 \pm 0.72$	-25.30 ± 5.10	-3.01 ± 0.54
	1 1 (1)			

Table 1. The isotopic composition of an IAEA international reference standard and a certified reference material.

(a) IAEA international standard, (b) certified reference material

Table 2. Element contents of a certified reference material and a lab standard used for elemental analysis.

Material (in%)	С	0	Н	S	Ν
EMA-P1 ^a	61.51	20.87	3.46	13.85	
Sulfanilamide ^b	41.81		4.65	18.62	16.25

(a) certified reference material, (b) laboratory standard for elemental analyzer

다른 시간차로 동위원소질량분석기에 주입되었다. 작업용표준물질의 안정동위원소비와 시료의 안정 동위원소비로부터 δ^{34} S값을 산정한다(식 (1)).

$$\delta^{34}\mathrm{S} = (\frac{R_{\mathrm{sample}} - R_{\mathrm{standard}}}{R_{\mathrm{standard}}}) \times 1000$$
 (1)

여기서 R은 가벼운 동위원소에 대한 무거운 동위 원소의 존재비로서 ³⁴S/³²S를 의미한다.

2.3 원소함량 분석

Sulfanilamide의 무게를 측정한 후 Tin boat에 담아 밀봉한 뒤 원소분석기로 측정하였다. 원소분석 기 내부의 열전도도검출기(TCD, thermal conductivity detector)는 sulfanilamide의 SO₂에 감응 하여 농도에 따라 전기적인 신호세기로 전환시킨다. 인증표준물질인 EMA-P1도 원소분석기로 측정하 여 원소함량을 계산하였다.

3. 결과 및 고찰

3.1 QCS (quality control sample)선정

중간점검 표준물질을 선정하기위해 국제원자력 기구(IAEA)에서 제공하는 IAEA S-1 Ag₂S (silver sulfide)를 시료량이 증가하는 순서로 15회 측정한 후 공시료(blank)를 10회 측정하였다. 그 다음으로 MgSO₄ (magnesium sulfate)를 시료량이 증가하는 순서로 14회 측정한 후 공시료 17회를 측정하였다. 그 다음 연속으로 Na₂SO₃ (sodium sulfite) 16회와 공시료 15회, Na₂SO₄ (sodium sulfate) 15회와 공시 료 8회를 순차적으로 분석하였다. 그림 1은 측정순 서에 따라 SO₂ (³²S¹⁶O¹⁶O⁺)의 피크높이를 보여준다 (그림 1).

Ag2S, MgSO4, Na2SO3, Na2SO4 측정을 완료한 후 첫 번째 공시료의 신호세기는 각각 0.406 nA, 0.949 nA, 4.354 nA, 6.884 nA였다. 따라서 중간점 검 표준물질을 선정하기 위하여 실시한 공시료에서 도 여전히 m/z=64 (³²S¹⁶O¹⁶O⁺) 피크는 의미있는 값을 나타내는 것으로 예상된다. Ag2S, MgSO4, Na2SO3, Na2SO4의 시료량과 신호세기(피크높이)에 대한 직 선성(linearity)을 결정계수(R²)와 함께 그림 1에 도 시하였다. Ag2S, MgSO4, Na2SO3, Na2SO4 측정순 서로 비교하면, 회귀직선식의 결정계수(R²)가 감소 하는 경향이 나타났다.

Studley et al. (2002)은 환경시료를 원소분석기와 연계된 동위원소질량분석기(EA-IRMS)로 분석하 였고 연소 과정 중에 생성된 SO₂가 순조롭게 방출되지 못하고 시료 표면 위에 흡착되거나 반응이 일어난다고 설명하였다. 특히, 반응 컬럼 안에서 잔류미네랄이 황 을 흡착하여 연속분석에 영향을 주고 피크 꼬리끌림 (peak tailing)이나 피크 지체(peak retardation)가 메 모리효과(memory effect)로 야기된다고 설명하였다. Grassineau (2006)는 SO₂피크가 대칭적이지 않거나 시료의 연소가 성공적이지 못하면 메모리효과가 일 어날 수 있다고 하였다. 본 연구에서도 SO₂ 피크의 비 대칭 및 꼬리끌림 현상이 나타나는 것으로 보아 흡착 이 일어나는 것으로 예측된다. 따라서 메모리효과가 발생할 수 있으므로 중간점검용 표준물질 없이 분석 물질(EMA-P1)을 연속하여 측정할 것을 제안한다.

3.2 황안정동위원소비값의 정확도와 정밀도

여러 시료량(시료무게)에 따라 δ³⁴S값의 변동을 관 찰하였고 그 측정값을 표 3에 요약하였다. 시료무게가 가장 큰 시료(85번 ~ 88번)의 평균 δ³⁴S값은 -46.137‰ 이며, 시료무게가 가장 작은 시료(1번 ~ 4번)의 평균 δ³⁴S값은 -2.785‰로 나타났다. 시료무게가 증가함 에 따라 δ^{34} S값은 δ^{13} C값과 δ^{15} N값과 다르게 한계점 에 도달하면 급격히 낮아지는 경향을 보였다(Kim et al., 2012, 2013). Sieper et al. (2006)은 EA-IRMS 장 비를 이용하여 δ^2 H값, δ^{13} C값, δ^{15} N값, δ^{34} S값의 정 밀도를 제시하였다. Sieper가 사용한 원소분석기 (Vario EL III)와 동위원소질량분석기(IsoPrime)가 본 연구장비와 유사한 모델이며, 기기 분석 조건이 연 소튜브(WO₃) 1150℃, 환원튜브(Cu) 850℃로 동일 한 조건이므로 Sieper가 제시한 황안정동위원소비 값 정밀도 0.3‰과 비교하였다. 측정값이 -3.01‰(인 증값) ± 0.54‰(1o) 범위에 들어오는 시료는 1번 ~ 26번으로 정밀도가 0.139‰로 산출되었다.

그림 2는 표 3의 시료를 황함량에 따라 δ^{34} S값으 로 도시하였다. 88개 시료를 연속하여 분석하였으므 로 연속분석방법으로 기재하였고 측정된 δ^{34} S값을

blank

30

25

20

15

10

5

Peak height(nA)

silver sulfide

 $R^2 = 0.9946$

인증값 -3.01‰과 비교하였다(그림 2의 다이아몬드 표시). 황함량이 21.883 µg ~ 101.382 µg범위인 시료 1번 ~ 26번은 -3.01‰ ± 0.54‰(1o) 범위 안에 나타 났고, 황함량이 21.883 µg ~ 151.104 µg인 시료 1번 ~ 39번은 -3.01‰ ± 1.08‰(2o)범위 안에 포함되었 다. 그러나 δ³⁴S값이 신뢰할 수 있는 시료량 무게범 위가 δ^{13} C값과 δ^{15} N값에 비해 상당히 좁았다(Kim et al., 2012, 2013). Hansen et al. (2009)은 가장 높은 감도를 얻기 위해 peak center를 수행하였고 그 결 과 안정도가 향상된다고 보고하였다. 본 연구에서도 측정의 안정성을 확보하기 위해 작업용표준물질인 SO2의 ³²S¹⁶O¹⁶O⁺ (m/z=64)와 ³⁴S¹⁶O¹⁶O⁺ (m/z=66) ion beam을 collector 중앙에 초점을 맞추도록 매 10개 시료마다 가속전압(accelerating voltage)을 교정하는 peak center를 수행하였다.

10개의 시료마다 peak center를 실시한 비연속분 석방법의 결과, 황함량에 따른 δ^{34} S값의 변동을 그림 2의 원형표시와 표 4에 나타내었다. peak center 후 $-3.01\% \pm 0.54\%$ (1 σ)범위에 해당되는 δ^{34} S값은 황 함량이 47.644 μg ~ 246.669 μg범위였으며, 따라서 연속적으로 분석한 시료의 최대 황함량(101.382 µg) 보다 2배 이상 증가한 것을 확인할 수 있었다(그림 2). -3.01‰ ± 1.08‰(2σ)범위에 해당되는 황함량 역

sodium sulfate

 $R^2 = 0.6944$

sodium sulfite

 $R^2 = 0.5888$

magnesium sulfate

 $R^2 = 0.9915$

fourteen samples of MgSO₄, seventeen blanks, sixteen samples of Na₂SO₃, fifteen blanks, fifteen samples of Na₂SO₄, and eight blanks.

Sample number	Sample weight (mg)	Sulfur content ^b (μ g)	δ ³⁴ S (‰)	SD (‰)	Peak height ratio ^c (%)
1	0.158	21.883	-2.747	0.139 ^d	19.594
2	0.176	24.376	-2.774		24.353
3	0.187	25.900	-2.750		24.773
4	0.188	26.038	-2.867		25.381
5	0.213	29.501	-2.766		31.179
6	0.233	32.271	-2.877		34.528
7	0.258	35.733	-2.934		40.396
8	0.261	36.149	-2.941		39.775
9	0.301	41.689	-3.030		42.188
10	0.354	49.029	-3.013		52.687
11	0.368	50.968	-2.972		59.176
12	0.392	54.292	-2.956		59.360
13	0.410	56.785	-2.958		69.799
14	0.435	60.248	-3.068		68.716
15	0.455	63.018	-3.001		78.445
16	0.475	65.788	-2.985		73.069
17	0.502	69.527	-2.985		87.665
18	0.505	69.943	-2.899		83.669
19	0.542	75.067	-2.850		94.456
20	0.561	77.699	-2.757		92.430
21	0.603	83.516	-2.735		105.894
22	0.604	83.654	-2.775		108.697
23	0.619	85.732	-2.713		103.359
24	0.632	87.532	-2.766		104.255
25	0.721	99.859	-2.566		114.987
26	0.732	101.382	-2.546		133.128
27	0.786	108.861	-2.399		132.519
28	0.792	109.692	-2.392		135.129
29	0.806	111.631	-2.426		207.785
30	0.836	115.786	-2.376		122.936
31	0.869	120.357	-2.493		127.466
32	0.884	122.434	-2.131		140.271
33	0.911	126.174	-2.201		158.618
34	0.932	129.082	-2.298		159.854
35	0.942	130.467	-2.323		157.404
36	0.973	134.761	-2.251		164.053
37	1.033	143.071	-2.235		188.676
38	1.082	149.857	-2.130		163.105
39	1.091	151.104	-1.950		173.139
40	1.093	151.381	-1.920		172.156
41	1.103	152.766	-1.776		191.421
42	1.136	157.336	-1.810		192.752
43	1.140	157.890	-1.810		193.216
44	1.148	158.998	-1.826		197.824
45	1.237	171.325	-1.643		228.187
46	1.247	172.710	-1.588		213.922

Table 3. δ^{34} S, standard deviation of δ^{34} S and peak height ratio measured by the IRMS with different sulfur contents of EMA-P1(successive method)^a.

Sample number	Sample weight (mg)	Sulfur content ^b (μ g)	$\delta^{34}S$ (‰)	SD (‰)	Peak height ratio ^c (%)
47	1.268	175.618	-1.611		204.677
48	1.271	176.034	-1.567		219.861
49	1.308	181.158	-1.492		239.550
50	1.311	181.574	-1.560		226.913
51	1.329	184.067	-1.485		224.207
52	1.362	188.637	-1.487		225.235
53	1.427	197.640	-1.433		251.601
54	1.445	200.133	-1.484		255.333
55	1.479	204.842	-1.496		246.842
56	1.486	205.811	-1.420		250.648
57	1.735	240.298	-1.294		264.453
58	1.743	241.406	-1.249		289.611
59	1.778	246.253	-1.231		309.434
60	1.785	247.223	-1.230		304.934
61	1.915	265.228	-1.153		323.635
62	1.935	267.998	-1.162		316.772
63	1.956	270.906	-1.186		334.412
64	1.964	272.014	-1.055		354.000
65	2.117	293.205	-0.989		339.677
66	2.146	297.221	-0.952		365.621
67	2.155	298.468	-0.933		377.711
68	2.188	303.038	-0.860		359.280
69	2.310	319.935	-0.951		359.357
70	2.338	323.813	-0.855		404.492
71	2.342	324.367	-0.779		373.558
72	2.391	331.154	-0.609		389.842
73	2.537	351.375	-2.514		399.944
74	2.559	354.422	-6.363		412.622
75	2.574	356.499	-10.147		419.829
76	2.588	358.438	-12.930		424.779
77	2.748	380.598	-24.123		448.363
78	2.753	381.291	-21.069		438.406
79	2.756	381.706	-26.664		454.294
80	2.758	381.983	-25.199		449.792
81	2.934	406.359	-35.570		483.441
82	2.940	407.190	-33.636		473.493
83	2.941	407.329	-35.507		476.879
84	2.996	414.946	-39.475		487.737
85	3.125	432.813	-46.899		512.782
86	3.153	436.691	-46.889		504.695
87	3.167	438.630	-44.367		502.031
88	3.176	439.876	-46.393		507.323

(a) 88 samples measured by EA-IRMS successively (b) Sulfur content was obtained from sample weight reflected on the sulfur content 13.85%(Table 2) (c) Peak height ratio was calculated by the $SO_2(^{32}S^{16}O^{16}O^{+})$ peak height of sample to working standard (d) Standard deviation within -3.01‰ ± 0.54‰(1 σ)

시 27.839 µg ~ 314.811 µg로 연속분석방법의 최대 황함량(151.104 µg)보다 2배 이상 증가하였다. 또한 -3.01‰ ± 0.54‰(1σ)범위의 황함량 시료들(47.644 μg ~ 246.669 μg)의 표준편차는 0.188‰ 로 Sieper *et* al. (2006)이 보고한 정밀도 0.3‰보다 낮은 수치였 다(표 4).

그림 3은 EMA-P1의 시료량이 증가하는 순서로 측정된 황안정동위원소비값을 보여주며 δ^{34} S값 범 위를 -50% ~ 0%로 확장하였다. 그림에서 다이아몬 드 표시는 시료를 연속적으로 분석하여 측정한 값 (연속분석방법)이며, 원형 표시는 10개의 시료를 측 정한 후 peak center를 실시하면서 측정한 값(비연 속분석방법)이다. 연속하여 88개 시료를 측정한 분 석방법과 매 10개의 시료마다 가속전압을 교정한 후 측정한 분석방법 모두에서 황함량이 약 350 μ g이상 에서는 δ^{34} S값이 급격히 감소되는 것을 관찰할 수 있 었다(그림 3).

Yun et al. (2004)은 시료량이 많을수록 완전연소

Fig. 2. Comparison of δ^{34} S values measured under different sulfur contents of EMA-P1 with the certified value.

Fig. 3. Sulfur isotopic composition under the range of 0% to -50% of samples measured successively and samples measured after calibrating ion beams for focusing collector.

Sample number	Sample weight(mg)	Sulfur content ^b (µg)	$\delta^{34}S(\%)$	SD(‰)	Peak height ratio ^c (%)
1	0.166	22.991	-1.833		57.107
2	0.201	27.839	-1.994		13.290
3	0.344	47.644	-2.891	0.188 ^d	25.027
4	0.419	58.032	-2.535		35.634
5	0.572	79.222	-2.707		59.469
6	0.625	86.563	-2.564		14.594
7	0.750	103.875	-2.910		70.881
8	0.800	110.800	-3.058		88.547
9	0.942	130.467	-2.797		179.015
10	1.084	150.134	-3.029		138.868
11	1.183	163.846	-2.990		188.652
12	1.223	169.386	-2.863		184.135
13	1.300	180.050	-2.783		182.674
14	1.419	196.532	-2.723		201.170
15	1.502	208.027	-2.612		240.579
16	1.669	231.157	-2.485		258.153
17	1.781	246.669	-2.558		264.785
18	1.861	257.749	-2.336		274.786
19	2.070	286.695	-2.225		341.320
20	2.126	294.451	-2.229		352.539
21	2.273	314.811	-1.993		326.084
22	2.362	327.137	-1.839		383.223
23	2.408	333.508	-1.708		395.402
24	2.511	347.774	-1.465		400.560
25	2.672	370.072	-5.978		401.864
26	2.742	379.767	-23.198		463.390
27	2.838	393.063	-28.064		477.338
28	2.949	408.437	-34.540		453.934
29	3.132	433.782	-44.710		517.317

Table 4. δ^{34} S measured after calibrating ion beams, 32 S ${}^{16}O^{16}O^{+}(m/z=64)$ and 34 S ${}^{16}O^{16}O^{+}(m/z=66)$, standard deviation and peak height ratio measured by the IRMS with different sulfur contents of EMA-P1(non successive method)^a.

(a) δ^{34} S values measured after calibrating ion beams for focusing collector (b) Sulfur content was obtained from sample weight reflected on the sulfur content 13.85%(Table 2) (c) Peak height ratio was calculated by the SO₂(³²S¹⁶O¹⁶O⁺) peak height of sample to working standard (d) Standard deviation within -3.01‰ ± 0.54‰(1 σ)

가 어려우며, 분석시료의 C/S 비가 클수록 O₂소모 에 대한 탄소-황의 경쟁관계로 동위원소 분별(isotope fractionation)이 가속화된다고 보고하였다. Hansen *et al.* (2009)은 황을 포함한 시료는 서로 다 른 산화수에 기인하여 SO₂ 전환이 불안정하다고 보 고하였다. 또한, Kelly *et al.* (2002)은 SO₂가 표면과 반응하거나 끈끈한 성질(점성)을 가지고 있어 질량 분석기에서 분별이 일어날 수 있다고 보고하였다. 본 연구에서도 과량의 시료에서는 SO₂ 가스의 생성 이 불안정하여 질량분석기에서 분별이 발생되는 것 으로 예상된다.

3.3 황함량의 정확도

원소분석기에서 생성된 N₂, CO₂, SO₂ 가스는 원 소분석기 내부의 흡착컬럼(adsorption column) 을 지나간다. N₂는 흡착컬럼에서 흡착되지 않고 동 위원소질량분석기로 이동한다. CO₂는 흡착되어 90 ℃까지 컬럼의 온도를 높인 후 130초 동안 탈착시 킨다. SO₂도 흡착되기 때문에 220℃까지 컬럼의 온 도를 높이고 150초 동안 탈착시켜 이동한다. 그리 고 운반가스인 He에 의해 N₂, CO₂, SO₂가 순차적 으로 동위원소질량분석기(IRMS)로 주입된다. 본 연구에서 원소분석기를 활용한 황함량은 88개의 EMA-P1시료(표 3)를 연속하여 분석하거나 매 10 개의 EMA-P1 시료(표 4)마다 peak center를 실시 한 경우 모두에서 인증된 황함량(13.85%)에 비해 과대하게 나타났다.

따라서, 원소분석기의 정확성를 확보하기 위해 흡착컬럼에서 SO₂ 가스를 50초 동안만 탈착되도록 시간을 줄였다. 분석시료인 EMA-P1을 50초 동안 탈착시켜 산출된 황함량을 인증값 13.85%와 비교하 였다(그림 4). 탈착시간이 50초인 경우 150초와 다르 게 과대평가는 일어나지 않았다. 즉, 황함량이 72.436 µg ~ 399.157 µg 범위에서 13.85%(인증값) ± 0.56% 로 나타났다(그림 4). 그러나 탈착시간이 50초의 경 우는 반대로 δ³⁴S값이 인증된 값보다 높게 나타나 황 안정동위원소비가 정확하지 않았다.

본 연구는 동시에 황안정동위원소비의 정확도·정 밀도와 황함량의 정확도 분석을 만족시키는 기기조 건을 제시하기 어려웠다. SO₂ 가스가 표면에서 흡착 하는 성질이 강하므로 정확성 있는 δ³⁴S값에는 충분 한 탈착시간이 필요한 것으로 판단된다.

3.4 작업용표준물질에 대한 시료의 황안정동위원소 SO₂ (³²S¹⁶O¹⁶O⁺)의 피크높이비

 δ^{34} S값의 신뢰범위를 신호세기로 설정하기 위해 표 4의 시료와 작업용 표준물질의 황안정동위원소 SO₂ (³²S¹⁶O¹⁶O⁺) 피크높이를 그림으로 도식화하였 다(그림 5). 그림 5에서 δ³⁴S값이 (인증값 ± 2σ) 범위 에 존재하는 시료 2번 ~ 21번은 피크높이가 0.672 nA ~ 17.030 nA 이며, δ³⁴S값이 (인증값 ± 1σ) 범위 에 존재하는 시료 3번 ~ 17번은 피크높이가 1.335 nA ~ 14.402 nA로 타나냈다. 작업용표준물질의 평 균 피크높이는 5.074 nA이다. 그러나 Kim이 제시 하였던 작업용표준물질인 CO2와 N2의 피크높이는 일정한데 반해 본 연구에서 보여주는 작업용표준물 질인 SO₂는 상대적으로 피크높이가 일정하지 않았다 (Kim et al., 2012, 2013). 작업용표준물질에 대한 시료 의 피크높이비는 각각 13.290% (시료 2번), 25.027% (시료 3번), 264.785%(시료 17번), 326.084%(시료 21번)로 산출되었다. 따라서 측정 δ³⁴S값이 (인증값 ± 10)범위가 되는 크로마토그래프 피크높이비(%)는 25.027% ~ 264.785% 범위이므로 황함량이 47.644 u g~ 246.669 μg 범위가 되도록 분석물질의 시료량

Fig. 4. Sulfur contents measured by the elemental analyzer that adsorption column was set at 220° C for 150 seconds in order to desorb SO₂.

sulfur dioxide gas height of each sample = sulfur dioxide gas height of each working standard

Fig. 5. Peak height(${}^{32}S^{16}O^{16}O^{+}$) of each sample and working standard.

을 조절할 것을 제안한다(표 4).

4. 결 론

동위원소질량분석기(IRMS)로 측정한 δ³⁴S값이 높은 정확도와 정밀도를 나타내는 최적의 시료 사용량 을 제안하고자 본 연구를 수행하였다. 신뢰할 수 있는 결과값을 산출하기 위해 고려해야 할 인자로는 황안 정동위원소비의 정확도, 정밀도, SO₂ (³²S¹⁶O¹⁶O⁺)의 피크높이(또는 작업용 표준물질에 대한 시료의 피크 높이비) 등이 있다.

황안정동위원소비값은 연속분석방법과 peak center작업을 수행한 비연속분석방법으로 비교하였다. δ^{34} S값의 (인증값 ± 1 σ) 범위에서 시료를 연속으로 분석한 경우 정밀도가 0.139‰로 기록되었으며, 매 10개의 시료마다 peak center를 실시한 비연속적 분 석에서는 그 값이 0.188‰로 기록되어 모두 비슷한 정밀도를 보여주었다. 그러나 δ^{34} S값의 정확도는 두 방법에서 차이를 보였다. 연속분석의 경우 δ³⁴S값이 (인증값 ± 1o) 범위에 해당되는 시료량은 21.883 µg ~ 151.104 µg인데 반해, 비연속적으로 분석한 경우 시료량은 47.644 µg ~ 246.669 µg로서 더 넓은 시료 량 범위에서 신뢰성 있는 δ^{34} S값을 얻을 수 있었다. 이에 ion beam의 감도를 높게 유지시키기 위하여 분석중에 주기적으로 peak center를 수행할 것을 제

아하다.

황 함량이 약 350 μg 이상에서는 연속분석방법과 비연속분석방법 모두에서 급격한 분별 현상이 일어 났다. 이는 주어진 분석 조건에서 과량의 시료가 SO2로 전환되기 어렵기 때문으로 예상된다. 이에, Yanagisawa and Sakal (1983)는 분석시료에 V2O5-SiO2를 적절 히 혼합하여 안정한 SO2 가스를 생성시키는 방법을 제시하였다. V2O5-SiO2를 혼합시켜 과량의 시료에 서도 δ³⁴S값이 일정하게 유지되고 메모리효과가 감 소되는지를 확인하기 위한 추가 연구가 필요할 것으 로 판단된다.

REFERENCES

- Barros, G.V., Martinelli, L.A., Novais, T.M.O., Ometto, J.P.H.B. and Zuppi, G.M., 2010, Stable isotopes of bulk organic matter to trace carbon and nitrogen dynamics in an estuarine ecosystem in Babitonga Bay (Santa Catarina, Brazil). Science of the Total Environment, 408, 2226-2232.
- Fry, B., 2007, Coupled N, C and S stable isotope measurement using a dual column gas chromatography system. Rapid Communications in mass spectrometry, 21, 750-756.
- Fry, B., Silva, S.R., Kendall, C. and Anderson, R.K., 2002, Oxygen isotope corrections for online δ^{34} S analysis. Rapid Communications in Mass Spectrometry, 16,

854-858.

- Glesemann, A., Jäger, H.-J., Norman, A.L., Krouse, H.R. and Brand, W.A., 1994, On-line sulfur-isotope determination using an elemental analyzer coupled to a mass spectrometer. Analytical Chemistry, 66, 2816-2819.
- Grassineau, N.V., 2006, High-precision EA-IRMS analysis of S and C isotopes in geological materials. Applied Geochemistry, 21, 756-765.
- Hansen, T., Burmeister, A. and Sommer, U., 2009, Simultaneous δ^{15} N, δ^{13} C and δ^{34} S measurements of low biomass samples using a technically advanced high sensitivity elemental analyzer connected to an isotope ratio mass spectrometer. Rapid Communications in Mass Spectrometry, 23, 3387-3393.
- Itoh, M., Takemon, Y., Makabe, A., Yoshimizu, C., Kuhzu, A., Ohte, N., Tumurskh, D., Tayasu, I., Yoshida, N. and Nagata, T., 2011, Evaluation of wastewater nitrogen transformation in a natural wetland (Ulaanbaatar, Mongolia) using dual-isotope analysis of nitrate. Science of the Total Environment, 409, 1530-1538.
- Kelly, S.D., Scotter, M.J., Macarthur, R., Castle, L. and Dennis, M.J., 2002, Survey of stable sulfur isotope ratios (³⁴S/³²S) of sulfite and sulfate in foods. Food Additives and Contaminants, 19, 1003-1009.
- Kim, B.-K., Hwang, J.-Y., Lee, S.-U., Kim, M.-S. and Lee, W.-S., 2013, The study on accuracy and precision of nitrogen isotope measurement using elemental analyzer-isotope ratio mass spectrometer (EA-IRMS). Journal of the Korean Society for Environmental Analysis, 16, 26-34 (in Korean with English abstract).
- Kim, B.-K., Nam, Y.-J., Lee, W.-S., Han, J.-S. and Hwang, J.-Y., 2012, The study on accuracy and precision of carbon isotope using elemental analyzer-isotope ratio mass spectrometer (EA-IRMS). Journal of the Korean Society for Environmental Analysis, 15, 245-255 (in Korean with English abstract).

- Micić, V., Kruge, M.A., Köster, J. and Hofmann, T., 2011, Natural, anthropogenic and fossil organic matter in river sediments and suspended particulate matter: A multi-molecular marker approach. Science of the Total Environment, 409, 905-919.
- Peterson, B.J. and Howarth, R.W., 1987, Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography, 32, 1195-1213.
- Sieper, H.-P., Kupka, H.-J., Williams, T., Rossmann, A., Rummel, S., Tanz, N. and Schmidt, H.-L., 2006, A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulfur in food commodities and other biological material. Rapid Communications in Mass Spectrometry, 20, 2521-2527.
- Studley, S.A., Ripley, E.M., Elswick, E.R., Dorais, M.J., Fong, J., Finkelstein, D. and Pratt, L.M., 2002, Analysis of sulfides in whole rock matrices by elemental analyzer continuous flow isotope ratio mass spectrometry, Chemical geology, 192, 141-148.
- Yanagisawa, F. and Sakal, H., 1983, Thermal decomposition of barium sulfate-vanadium pentaoxide-silica glass mixtures for preparation of sulfur dioxide in sulfur isotope ratio measurements. Analytical Chemistry, 55, 985-987.
- Yun, M., Wadleigh, M.A. and Pye, A., 2004, Direct measurement of sulphur isotopic composition in lichens by continuous flow-isotope ratio mass spectrometry. Chemical Geology, 204, 369-376.

투	고	일	:	2013년	5월	27일
심	사	일	:	2013년	5월	28일
심시	사완로	일	:	2013년	6월	28일